sfepy.terms.terms_navier_stokes module¶
-
class
sfepy.terms.terms_navier_stokes.
ConvectTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Nonlinear convective term.
Definition: \int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v}
Call signature: dw_convect (virtual, state)
Arguments: - virtual : \ul{v}
- state : \ul{u}
-
arg_shapes
= {'state': 'D', 'virtual': ('D', 'state')}¶
-
arg_types
= ('virtual', 'state')¶
-
static
function
()¶
-
name
= 'dw_convect'¶
-
class
sfepy.terms.terms_navier_stokes.
DivGradTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Diffusion term.
Definition: \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nu\ \nabla \ul{u} : \nabla \ul{w} \\ \int_{\Omega} \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nabla \ul{u} : \nabla \ul{w}
Call signature: dw_div_grad (opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
Arguments 1: - material : \nu (viscosity, optional)
- virtual : \ul{v}
- state : \ul{u}
Arguments 2: - material : \nu (viscosity, optional)
- parameter_1 : \ul{u}
- parameter_2 : \ul{w}
-
arg_shapes
= [{'opt_material': '1, 1', 'state': 'D', 'parameter_1': 'D', 'virtual': ('D', 'state'), 'parameter_2': 'D'}, {'opt_material': None}]¶
-
arg_types
= (('opt_material', 'virtual', 'state'), ('opt_material', 'parameter_1', 'parameter_2'))¶
-
static
function
()¶
-
modes
= ('weak', 'eval')¶
-
name
= 'dw_div_grad'¶
-
class
sfepy.terms.terms_navier_stokes.
DivOperatorTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Weighted divergence term of a test function.
Definition: \int_{\Omega} \nabla \cdot \ul{v} \mbox { or } \int_{\Omega} c \nabla \cdot \ul{v}
Call signature: dw_div (opt_material, virtual)
Arguments: - material : c (optional)
- virtual : \ul{v}
-
arg_shapes
= [{'opt_material': '1, 1', 'virtual': ('D', None)}, {'opt_material': None}]¶
-
arg_types
= ('opt_material', 'virtual')¶
-
name
= 'dw_div'¶
-
class
sfepy.terms.terms_navier_stokes.
DivTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate divergence of a vector field.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: \int_{\Omega} \nabla \cdot \ul{u}
\mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla \cdot \ul{u} / \int_{T_K} 1
(\nabla \cdot \ul{u})|_{qp}
Call signature: ev_div (parameter)
Arguments: - parameter : \ul{u}
-
arg_shapes
= {'parameter': 'D'}¶
-
arg_types
= ('parameter',)¶
-
name
= 'ev_div'¶
-
class
sfepy.terms.terms_navier_stokes.
GradDivStabilizationTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Grad-div stabilization term ( \gamma is a global stabilization parameter).
Definition: \gamma \int_{\Omega} (\nabla\cdot\ul{u}) \cdot (\nabla\cdot\ul{v})
Call signature: dw_st_grad_div (material, virtual, state)
Arguments: - material : \gamma
- virtual : \ul{v}
- state : \ul{u}
-
arg_shapes
= {'material': '1, 1', 'state': 'D', 'virtual': ('D', 'state')}¶
-
arg_types
= ('material', 'virtual', 'state')¶
-
static
function
()¶
-
name
= 'dw_st_grad_div'¶
-
class
sfepy.terms.terms_navier_stokes.
GradTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate gradient of a scalar or vector field.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: \int_{\Omega} \nabla p \mbox{ or } \int_{\Omega} \nabla \ul{w}
\mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla p / \int_{T_K} 1 \mbox{ or } \int_{T_K} \nabla \ul{w} / \int_{T_K} 1
(\nabla p)|_{qp} \mbox{ or } \nabla \ul{w}|_{qp}
Call signature: ev_grad (parameter)
Arguments: - parameter : p or \ul{w}
-
arg_shapes
= {'parameter': 'N'}¶
-
arg_types
= ('parameter',)¶
-
name
= 'ev_grad'¶
-
class
sfepy.terms.terms_navier_stokes.
LinearConvectTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Linearized convective term.
Definition: \int_{\Omega} ((\ul{b} \cdot \nabla) \ul{u}) \cdot \ul{v}
((\ul{b} \cdot \nabla) \ul{u})|_{qp}
Call signature: dw_lin_convect (virtual, parameter, state)
Arguments: - virtual : \ul{v}
- parameter : \ul{b}
- state : \ul{u}
-
arg_shapes
= {'parameter': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
-
arg_types
= ('virtual', 'parameter', 'state')¶
-
static
function
()¶
-
name
= 'dw_lin_convect'¶
-
class
sfepy.terms.terms_navier_stokes.
PSPGCStabilizationTerm
(name, arg_str, integral, region, **kwargs)[source]¶ PSPG stabilization term, convective part ( \tau is a local stabilization parameter).
Definition: \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ ((\ul{b} \cdot \nabla) \ul{u}) \cdot \nabla q
Call signature: dw_st_pspg_c (material, virtual, parameter, state)
Arguments: - material : \tau_K
- virtual : q
- parameter : \ul{b}
- state : \ul{u}
-
arg_shapes
= {'material': '1, 1', 'parameter': 'D', 'state': 'D', 'virtual': (1, None)}¶
-
arg_types
= ('material', 'virtual', 'parameter', 'state')¶
-
static
function
()¶
-
get_fargs
(tau, virtual, parameter, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
-
name
= 'dw_st_pspg_c'¶
-
class
sfepy.terms.terms_navier_stokes.
PSPGPStabilizationTerm
(name, arg_str, integral, region, **kwargs)[source]¶ PSPG stabilization term, pressure part ( \tau is a local stabilization parameter), alias to Laplace term dw_laplace.
Definition: \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla p \cdot \nabla q
Call signature: dw_st_pspg_p (opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
Arguments: - material : \tau_K
- virtual : q
- state : p
-
name
= 'dw_st_pspg_p'¶
-
class
sfepy.terms.terms_navier_stokes.
SUPGCStabilizationTerm
(name, arg_str, integral, region, **kwargs)[source]¶ SUPG stabilization term, convective part ( \delta is a local stabilization parameter).
Definition: \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ ((\ul{b} \cdot \nabla) \ul{u})\cdot ((\ul{b} \cdot \nabla) \ul{v})
Call signature: dw_st_supg_c (material, virtual, parameter, state)
Arguments: - material : \delta_K
- virtual : \ul{v}
- parameter : \ul{b}
- state : \ul{u}
-
arg_shapes
= {'material': '1, 1', 'parameter': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
-
arg_types
= ('material', 'virtual', 'parameter', 'state')¶
-
static
function
()¶
-
get_fargs
(delta, virtual, parameter, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
-
name
= 'dw_st_supg_c'¶
-
class
sfepy.terms.terms_navier_stokes.
SUPGPStabilizationTerm
(name, arg_str, integral, region, **kwargs)[source]¶ SUPG stabilization term, pressure part ( \delta is a local stabilization parameter).
Definition: \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p\cdot ((\ul{b} \cdot \nabla) \ul{v})
Call signature: dw_st_supg_p (material, virtual, parameter, state)
Arguments: - material : \delta_K
- virtual : \ul{v}
- parameter : \ul{b}
- state : p
-
arg_shapes
= {'material': '1, 1', 'parameter': 'D', 'state': 1, 'virtual': ('D', None)}¶
-
arg_types
= ('material', 'virtual', 'parameter', 'state')¶
-
static
function
()¶
-
get_fargs
(delta, virtual, parameter, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
-
name
= 'dw_st_supg_p'¶
-
class
sfepy.terms.terms_navier_stokes.
StokesTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Stokes problem coupling term. Corresponds to weak forms of gradient and divergence terms. Can be evaluated.
Definition: \int_{\Omega} p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} q\ \nabla \cdot \ul{u} \mbox{ or } \int_{\Omega} c\ p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} c\ q\ \nabla \cdot \ul{u}
Call signature: dw_stokes (opt_material, virtual, state)
(opt_material, state, virtual)
(opt_material, parameter_v, parameter_s)
Arguments 1: - material : c (optional)
- virtual : \ul{v}
- state : p
Arguments 2: - material : c (optional)
- state : \ul{u}
- virtual : q
Arguments 3: - material : c (optional)
- parameter_v : \ul{u}
- parameter_s : p
-
arg_shapes
= [{'opt_material': '1, 1', 'state/grad': 1, 'state/div': 'D', 'virtual/grad': ('D', None), 'parameter_s': 1, 'parameter_v': 'D', 'virtual/div': (1, None)}, {'opt_material': None}]¶
-
arg_types
= (('opt_material', 'virtual', 'state'), ('opt_material', 'state', 'virtual'), ('opt_material', 'parameter_v', 'parameter_s'))¶
-
modes
= ('grad', 'div', 'eval')¶
-
name
= 'dw_stokes'¶