
 Open Source Detectors
 Developers Guide

Page 1 May 29, 2014
 Revision 3.0

Open Source Detectors
Developers Guide

Revision 3.0
May 29, 2014

 Open Source Detectors
 Developers Guide

Page 2 May 29, 2014
 Revision 3.0

Copyright © 2014 Cisco and/or its affiliates. All rights reserved.

 Open Source Detectors
 Developers Guide

Page 3 May 29, 2014
 Revision 3.0

Table of Contents

1 Overview ... 4

2 Detector Code Structure.. 4

2.1 Detector Info Header .. 5

2.2 Include Required Libraries ... 5

2.3 DetectorPackageInfo .. 6

2.4 Detector Initialize.. 6

2.5 Detector Validate.. 7

2.6 DetectorFini .. 7

3 Debugging .. 7

4 Lua-C API ... 7

4.1 Detector Api ... 8

4.2 Detector Flow API ...15

5 Appendix .. 16

5.1 Flow Flags...16

 Open Source Detectors
 Developers Guide

Page 4 May 29, 2014
 Revision 3.0

1 Overview

In Snort version 2.9.7, Cisco will release a new dynamic preprocessor OpenAppID, which will add application

identification to Snort capabilities. Application identification can be used to view how applications are using

network resources and to enforce application aware rules to control and manage applications running on network.

Cisco will release open source code for hundreds of application detectors that can be used to identify frequently used

applications. Users are free to copy and modify Cisco-provided detectors and create new detectors. The detectors

will be small Lua programs that use a C-Lua API to interact with OpenAppID preprocessor. This document presents

developer’s guide to understand detector design and write a custom detector.

2 Detector Code Structure

A detector has the following main components. The Detector Info Header, the included required libraries, the

DetectorPackageInfo, the DetectorInit function, the DetectorValidator function, and the DetectorClean. We will

describe each of them in more details below.

 Open Source Detectors
 Developers Guide

Page 5 May 29, 2014
 Revision 3.0

2.1 Detector Info Header

This is an optional comment block that describes the detector. Cisco detectors will contain information in the

following format. User detectors can continue to use the same format, add more fields or completely skip the info

header. This has no impact on the functionality of the detector.

2.2 Include Required Libraries

In order to keep the detectors short, some commonly used code can placed into a library. Here the Cisco detector

is including a library DetectorCommon.lua and creating a shortcut ‘DC’ to it.

--[[

detection_name: CraftBeersFests

version: 2

description: CraftBeersFests.

--]]

require "DetectorCommon"

local DC = DetectorCommon

DetectorPackageInfo = {

 name = 'craftbeersfests',

 proto = DC.ipproto.tcp,

 client = {

 init = 'DetectorInit',

 validate = DetectorValidate,

 clean = DetectorClean,

 minimum_matches = 0

 },

 server = {

 init = nil,

 validate = nil,

 clean = nil

 },

}

function DetectorInit(detectorInstance)

 gDetector = detectorInstance;

 gAppId = gDetector:open_createApp('craftbeersfests');

 if gDetector.open_addUrlPattern then

 gDetector:open_addUrlPattern(0, 0, gAppId,

 "craftbeerfestdc.com", "/", "http:");

 gDetector:open_addUrlPattern(0, 0, gAppId,

 "mdcraftbeerfestival.com", "/", "http:");

 end

end

function DetectorValidate()

end

funciton DetectorClean()

end

InfoHeader

Included
Libraries

Detector
Package

Detector
Initialization

Function

Detector
Validation
Function

Detector Clean
Function

 Open Source Detectors
 Developers Guide

Page 6 May 29, 2014
 Revision 3.0

require "DetectorCommon"

local DC = DetectorCommon

Cisco libraries must be placed into the odp/libs subdirectory under the directory where Cisco Open Detector
Package (ODP) was installed. This path is automatically included in the Lua path. Users can create more libraries
and place them in <ODP_install_dir>/custom/libs, which is also automatically included in the Lua path.

2.3 DetectorPackageInfo

The DetectorPackageInfo structure is required in each detector. It identifies client and server functions that will be
called to initialize, validate (process packets) and cleanup the detector. OpenAppID preprocessor reads this
structure after loading Lua code and calls initialization functions.

The structure has the following elements:

1. DetectorPackageInfo.name
This is a name for the detector that is used for logging purpose.

2. DetectorPackageInfo.proto
Protocol value. It can be DC.ipproto.tcp or DC.ipproto.udp.

3. DetectorPackageInfo.client
If the detector identifies client side application (for example Firefox) then this structure is populated.
Detectors for payload application (example Facebook) will provide client section only. The following
functions can be provided:
o init

Name of callback function that initialize a detector. See “Detector Initialize” section for
details.

o validate
Name of callback function that process packets in the detector. The function typically
inspects packet contents and may use stored results from previous packets to detect an
application. Before finishing, the functions call an appropriate API function to indicate results
of detection. These functions are not required for some specific applications. See “Detector
Validate” for more details.

o clean
Name of callback function that perform cleanup when Snort is exiting. The function is
optional and may be omitted in the DetectorPackageInfo structure.

4. DetectorPackageInfo.server
If the detector identifies a server side application (for example Apache web server) then this structure
is populated. The structure provides init, validate and clean function names that have same purpose
as in client side.

2.4 Detector Initialize

Each detector must have an initializer function that is present in the DetectorPackageInfo structure.
OpenAppID preprocessor will call this function directly upon loading the detector.

The function is given detectorInstance, an instance of Detector class, which should be stored globally and
used for calling all Lua-C API functions. The function may perform one or more of the following:

1. Create a new application name by calling open_createApp().
2. Setup fast patterns and the port for an application. These are used for selecting a

detector for a flow. See service_registerPattern() and service_addPorts().

 Open Source Detectors
 Developers Guide

Page 7 May 29, 2014
 Revision 3.0

3. Add patterns for specific headers for HTTP . See open_addUrlPattern() etc.

2.5 Detector Validate

The validation function, provided in the DetectorPackageInfo structure, is called when the OpenAppID
preprocessor determines the detector is viable for deeper inspection to detect an application. It
performs the same logic steps as a detector written in C. It can be a state driven pattern match that
spans multiple packets in a flow or a simple straight pattern match with any packet.

function DetectorValidator()

 local size = gDetector:getPacketSize()

 local dir = gDetector:getPacketDir()

 if (size == 0 or dir ~= 1) then

 gDetector:inProcessService()

 return DC.serviceStatus.inProcess

 end

 if ((size >= 35) and (gDetector:getPcreGroups("stream:stream"))) then

 gDetector:addService(gServiceId, "", "", 692)

 return DC.serviceStatus.success

 end

 gDetector:failService()

 return serviceFail(context)

end

Validate functions are not called if the actual application is HTTP, SSL, and SIP based. For these applications, Snort
preprocessors parse protocol headers and make them available for pattern matching through C-Lua API functions
open_addUrlPattern() is an example of one such function. CraftBeersFests Customer detector provided a validator
function just to show program structure.

2.6 DetectorFini

This function is called when a detector is destroyed during Snort exit. Note that Lua performs garbage collection
automatically when an object is not referenced anymore so this function does free memory. Possible uses of the
function are to print statistics about flow, packets, application detected etc.

3 Debugging

See http://lua-users.org/wiki/DebuggingLuaCode for information on debugging Lua. One can also use
print statements for debugging.

4 Lua-C API

The following sections provide detailed view into Lua-C API functions. The documentation sometimes refers to

DetectorCommon.lua file, which is include in the ODP package and installed under odp/libs subdirectory. This is a

common library file that is included in all detector Lua files. It provides common definitions and helper functions.

http://lua-users.org/wiki/DebuggingLuaCode

 Open Source Detectors
 Developers Guide

Page 8 May 29, 2014
 Revision 3.0

4.1 Detector Api

4.1.1 Client Side API

4.1.1.1 int client_registerPattern (protocol, pattern, patternSize, position)

Register pattern hints for this detector selection.

Parameters:

Protocol IP Protocol. See ipproto values defined in DetectorCommon.lua. Example
DC.ipproto.tcp .
Values are same as protocol values in /usr/include/netinet/in.h or equivalent
system header file.

pattern ASCII or binary pattern

patternSize Size of pattern in bytes

position Position in packet payload where pattern should match. First byte is position
1. Position 0 means any position.

Returns:

int – 0 if successful and -1 otherwise.

4.1.2 Server Side API

4.1.2.1 int service_registerPattern (protocol, pattern, patternSize, position)

Register a pattern for fast pattern matching. Lua detector calls this function to register a pattern for fast pattern

matching.

Parameters:

protocol IP Protocol. See ipproto values defined in DetectorCommon.lua. Example
DC.ipproto.tcp

pattern ASCII or binary pattern

patternSize Size of pattern in bytes

position Position in packet payload where pattern should match. First byte is position
1. Position 0 means any position.

Returns:

status/stack - 0 if successful, -1 otherwise.

4.1.2.2 int service_addPorts (protocol, port)

Lua detectors call this function to register ports on which a given service is expected to run.

Parameters:

Protocol IP Protocol. See ipproto values defined in DetectorCommon.lua. Example
DC.ipproto.tcp

Port Port number to register

Returns:

int - Number of elements on stack, which is always 1.

status/stack - 0 if successful, -1 otherwise.

4.1.2.3 int service_removePorts ()

Remove ports for this service when exiting.

 Open Source Detectors
 Developers Guide

Page 9 May 29, 2014
 Revision 3.0

Parameters:

Returns:

status/stack - 0 if successful, -1 otherwise.

4.1.2.4 int service_addAppIdDataToFlow (servicePort)

Add App ID related data to a future flow. Currently only service port number and validator function name are

added to future flow. The data is used to confirm a future flow matches a pre-selected service. The validator

function name is picked from C side so is it not specified in API call.

Parameters:

servicePort Service port number

Returns:

0 if successful, -1 otherwise.

4.1.2.5 int service_failService ()

Function confirms the flow is not running this service.

Parameters:

Returns:

int - values from enum serviceStatus in DetectorCommon.lua file.

4.1.2.6 int service_markIncompleteData ()

Detector uses this function to indicate an error in application identification due to incomplete knowledge/data.

The flow is not inspected anymore. Next related flow with the same responder IP, Port and Protocol, however,

will be given to the same detector to allow it to hopefully gather a complete set of data to make a determination.

This function is used in cases where a precondition for detecting an application is violated therefore the detector

cannot proceed with detection. As an example, an application may be detected by a pattern “ServicePattern” in

the responder packet only when the initiator sends pattern “clientPattern”. If “clientPattern” is not seen from the

initiator, the detector will declare the flow incompatible, so that it still gets the next flow.

In contrast, service_failService() would cause the next flow to go to another detector.

Parameters:

Returns:

int - values from enum serviceStatus in DetectorCommon.lua file.

4.1.2.7 int service_inProcessService ()

Detector uses this function to indicate the detector needs more packets to determine the application. Subsequent

packets are given to this detector for more analysis.

Parameters:

Returns:

int - values from enum serviceStatus in DetectorCommon.lua file.

4.1.3 Common API

4.1.3.1 int getPacketSize ()

Gets length of TCP/UDP payload of current packet.

 Open Source Detectors
 Developers Guide

Page 10 May 29, 2014
 Revision 3.0

Parameters:

Returns:

packetSize - length of TCP/UDP payload of current packet, if successful. NIL otherwise.

4.1.3.2 int getPacketDir ()

Gets packet direction. A flow/session maintains initiator and responder sides. A packet direction is determined

in relation to the original initiator.

Parameters:

Returns:

packetDir - direction of packet on stack, if successful. NIL otherwise.

4.1.3.3 int matchSimplePattern (pattern, patternSize, position)

Performs a simple pattern comparison against packet payload.

Parameters:

pattern ASCII or binary pattern

patternSize Size of pattern in bytes

position Position in packet payload where pattern should match. First byte is position
1. Position 0 means any position.

Returns:

memCmpResult - returns -1, 0, or 1 based on memcmp result.

4.1.3.4 int getPcreGroups (pattern, position)

Performs a PCRE (Perl Compatible Regular Expression) match with grouping. A simple regular expression

match with no grouping can also be performed.

Parameters:

pattern PCRE pattern

position Position in packet payload where pattern should match. First byte is position
1. Position 0 means any position.

Returns:

matchedStrings - matched strings are pushed on stack starting with group 0. There may be 0 or more

4.1.3.5 int getL4Protocol ()

Gets protocol field value from IP header.

Parameters:

Returns:

IP protocol values if successful; for example TCP(6), UDP(17).

 0 otherwise.

4.1.3.6 ip getPktSrcIPAddr ()

Gets source IPv4 address from IP header.

Parameters:

Returns:

IPv4 - Source IPv4 address.

4.1.3.7 ip getPktDstIPAddr ()

Gets destination IPv4 address from IP header.

 Open Source Detectors
 Developers Guide

Page 11 May 29, 2014
 Revision 3.0

Parameters:

Returns:

IPv4 - destination IPv4 address.

4.1.3.8 int getPktSrcPort ()

Gets source port number from IP header.

Parameters:

Returns:

portNumber - source port number.

4.1.3.9 int getPktDstPort ()

Gets destination port number from IP header.

Parameters:

Returns:

portNumber - destination Port number.

4.1.3.10 int getPktCount ()

Gets packet count. This is used mostly for printing a packet sequence number when testing with a pcap file.

Parameters:

Returns:

packetCount - Total packet processed by RNA.

4.1.3.11 void getFlow ()

Gets flow object from a detector object. The flow object is then used with flowApi. A new copy of flow object

is provided with every call.

Parameters:

Returns:

4.1.3.12 void logMessage (level, message)

Logs messages from detectors into wherever /etc/syslog.conf directs them. An example is:

detector:log(DC.logLevel.warning, 'a warning')

Parameters:

level Level of message. See DetectorCommon.lua for enumeration.

message Message to be logged.

4.1.3.13 Void addContentTypePattern (pattern, appId)

Adds pattern for content type HTTP header.

Parameters:

pattern Pattern to match content type HTTP header.

appId Application identifier.

Returns:

4.1.3.14 void addSipUserAgent (appId, version, pattern)

Adds pattern to detect SIP client.

 Open Source Detectors
 Developers Guide

Page 12 May 29, 2014
 Revision 3.0

Parameters:

appId AppId assigned to SIP client.

Version Version of SIP client. Not used in open source.

pattern Pattern to match on SIP user agent header.

Returns:

4.1.3.15 addSipServer (appId, version, pattern)

Adds pattern to detect SIP server.

Parameters:

appId AppId assigned to SIP server.

Version Version of SIP server. Not used in open source.

pattern Pattern to match on SIP server header.

Returns:

4.1.3.16 void addHostPortApp (type, appid, ip, port, protocol)

Adds IP address, port, and protocol to identify future flows as a specific application.

Parameters:

type Always 0.

AppId Application identifier

IP IPv6 or IPv4 pattern in ASCII string format. Subnet format not supported.

Port Port number

Protocol TCP or UDP

Returns:

 void

4.1.3.17 int registerAppId (AppId)

Adds server-side application id to a Snort session.

Parameters:

AppId Application Identifier

Returns:

0 is successful, -1 otherwise.

4.1.3.18 void addAppUrl (serviceAppId, clientAppId, clientAppType, payloadAppId,
payloadAppType, hostPattern, pathPattern, schemePattern, queryPattern, appID)

This function will add the specified URL pattern to the pattern list to be searched against when HTTP traffic is

detected. This can be used to further identify the application type for this traffic. If a match is detected, the

traffic will be further tagged with the specified application identification data.

Parameters:

serviceAppId Service application ID (such as HTTP)

clientAppId Client application ID (such as a browser)

clientAppType Client application ID type (legacy – currently not used)

payloadAppId Payload application ID (legacy)

payloadAppType Payload application ID type (legacy – currently not used)

hostPattern Pattern to match for host in URL; for example “examplewebsite.com”

pathPattern Pattern to match for path in URL; for example “/example/path”

 Open Source Detectors
 Developers Guide

Page 13 May 29, 2014
 Revision 3.0

schemePattern Pattern to match for scheme; for example “http:”

queryPattern Pattern to match for query in URL; for example “examplequery=somevalue”

appId Application ID (such as a user-defined application)

Returns: void

4.1.3.19 void addRTMPUrl (serviceAppId, clientAppId, clientAppType, payloadAppId,
payloadAppType, hostPattern, pathPattern, schemePattern, queryPattern, appID)

This function will add the specified URL pattern to the pattern list to be searched against when an RTMP

session is detected. This can be used to further identify the application type for this traffic. If a match is

detected, the traffic will be further tagged with the specified application identification data.

Parameters:

serviceAppId Service application ID (such as HTTP)

clientAppId Client application ID (such as a browser)

clientAppType Client application ID type (legacy – currently not used)

payloadAppId Payload application ID (legacy)

payloadAppType Payload application ID type (legacy – currently not used)

hostPattern Pattern to match for host in URL; for example “examplewebsite.com”

pathPattern Pattern to match for path in URL; for example “/example/path”

schemePattern Pattern to match for scheme; for example “http:”

queryPattern Pattern to match for query in URL; for example “examplequery=somevalue”

appId Application ID (such as a user-defined application)

Returns: void

4.1.3.20 void addSSLCertPattern (type, appId, pattern)

This function will add the specified pattern to the pattern list of host names to be searched when SSL traffic is

detected. This information is retrieved from the client’s certificate request to the server. If the pattern matches,

the specified application ID will be tagged to the traffic.

Parameters:

Type Type of ID: web application (0), or client (1). If the type is web application, an
SSL client will be assumed, and the traffic payload type will be tagged with
the specified application. If the type is client, then the specified application ID
will be associated with the client ID of the traffic.

appId Application ID

Pattern Pattern to match against SSL host name; for example “examplewebsite.com”

Returns: void

4.1.3.21 void addSSLCnamePatter (type, appId, pattern)

This function will add the specified pattern to the pattern list of SSL common/organization names to be

searched when SSL traffic is detected. This information is retrieved from the SSL certificate exchanged from

the server (common name and organization name). If the pattern matches, the specified application ID will be

tagged to the traffic.

Parameters:

type Type of ID: web application (0), or client (1). If the type is web application, an
SSL client will be assumed, and the traffic payload type will be tagged with
the specified application. If the type is client, then the specified application ID
will be associated with the client ID of the traffic.

appId Application ID

pattern Pattern to match against SSL host name; for example “Example Common
Name”

 Open Source Detectors
 Developers Guide

Page 14 May 29, 2014
 Revision 3.0

Returns: void

4.1.4 Open API

This API provides simplified functions to support open source detectors written by users.

4.1.4.1 int open_createApp (appName)

Converts appName (a string) to an AppId (unique number). If appName does not match any existing
application name then a new application is created and a unique AppId is assigned dynamically. For existing
applications, the matching AppId is returned. This AppId should be used subsequently with C-Lua API
wherever an AppId is required. Dynamic AppId values can change between different Snort runs.

Parameters:

appName A unique name for user created application.

Returns:

 A valid appId or NIL.

4.1.4.2 int open_addClientApp (clientAppId, serviceAppId)

Add client-side application. ServiceAppId is for services that can be inferred from the client-side application.

Parameters:

clientAppId Client-side AppId

serviceAppId Service AppId inferred from client AppId.

Returns:

 0 if successful, -1 otherwise.

4.1.4.3 int open_addServiceApp (serviceAppId)

Add server-side application.

Parameters:

serviceAppId Service AppId

Returns:

 0 if successful, -1 otherwise.

4.1.4.4 int open_addPayloadApp (payloadAppId)

Add server-side application.

Parameters:

payloadAppId Payload AppId

Returns:

 0 if successful, -1 otherwise.

4.1.4.5 void open_addHttpPattern (patternType, Sequence, serviceAppId, clientAppId,
payloadAppId, pattern)

API to add patterns for user agent and other special purpose patterns. Not to be used by new detectors.

Parameters:

patternType Determines location where pattern should appear. Valid values are host (1),
user agent (2), URL (3)

Sequence 0 single, 5 user agent header.

serviceId Service AppId

 Open Source Detectors
 Developers Guide

Page 15 May 29, 2014
 Revision 3.0

ClientAppId Client AppId

PayloadAppId Payload AppId

Pattern Pattern to match

Returns: void

4.1.4.6 void open_addUrlPattern (serviceAppId, clientAppId, payloadAppId, hostpattern,
pathPattern, schemePattern)

API to add patterns for user agent and other special purpose patterns. Not to be used by new detectors.

Parameters:

serviceId ServiceId

ClientAppId ClientAppId

PayloadAppId PayloadAppId

hostPattern Pattern to match host HTTP header

pathPattern Pattern to match in path of URL

SchemePattern Pattern to match in scheme; for example “http”

Returns: void

4.2 Detector Flow API

4.2.1 Detector Flow API

4.2.1.1 void clearFlowFlag (flowFlags)

Clears the specified flow-related flag(s). See flowFlags in DetectorCommon.lua for a list of flow flags. Refer to

the appendix for a list of available flags.

Parameters:

flowFlags Flow flags to be reset to 0.

Returns:

Void

4.2.1.2 unsigned int getFlowFlag (flowFlag)

Gets the value of the specified flow-related flag(s). See flowFlags in DetectorCommon.lua for a list of flow

flags. Refer to the appendix for a list of available flags.

Parameters:

flowFlag Flow flag value to get.

Returns:

int - value of a given flag.

4.2.1.3 void setFlowFlag (flowFlags)

Sets the specified flow-related flag(s). See flowFlags in DetectorCommon.lua for list of flow flags. Refer to the

appendix for a list of available flags.

Parameters:

flowFlags Flow flags to be set (value 1)

Returns:

void

4.2.1.4 getFlowKey (void)

Gets a unique flow/session key. This key can be uniquely associated with this specific flow, so it can be used to

maintain flow-specific data for the lifetime of the flow. Maintaining flow-specific data on the Lua side can be

 Open Source Detectors
 Developers Guide

Page 16 May 29, 2014
 Revision 3.0

very expensive so this should be used only when needed.

Parameters:

Returns:

flowKey- A 4 byte flow key

4.2.1.5 void* createFlow (srcAddr, srcPort, dstAddr, dstPort, protocol)

Creates a new flow and returns user data for newly created flow. The new flow creates an expected channel in

Snort.

Parameters:

srcAddress Source address of the flow

srcPort Source port of the flow

dstAddress Destination address of the flow.

dstPort Destination port of the flow.

Protocol IP Protocol. See ipproto values defined in DetectorCommon.lua. Example
DC.ipproto.tcp

Returns:

DetectorFlowUserData - A userdata representing DetectorFlowUserData.

5 Appendix

5.1 Flow Flags

The following is a list of available flow-related flags that can be set, cleared, or viewed by detectors:

 udpReversed (0x00400000)

 incompatible (0x00800000): Service protocol had incompatible client data

 ignoreHost (0x01000000): Call service detection even if the host does not exist

 ignoreTcpSeq (0x02000000): Ignore TCP state tracking

 clientAppDetected (0x04000000): Finished with client app detection

 gotBanner (0x08000000): Acquired a banner

 notAService (0x10000000): Flow is a data connection, not a service

 logUnknown (0x20000000): Log packets of the session

 continue (0x40000000): Continue calling the routine after the service has been identified

 serviceDetected (0x80000000): Service protocol was detected

