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1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces to C and C++ programs. Originally developed in 1995, SWIG was
first used by scientists in the Theoretical Physics Division at Los Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and a constantly changing code base. The use of a scripting language
interface provided a simple yet highly flexible foundation for solving these types of problems. SWIG simplifies development by largely automating the task of scripting language integration--
allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used in a wide variety of applications--in fact almost anything where

C/C++ programming is involved.

1.2 SWIG Versions

In the late 1990's, the most stable version of SWIG was release 1.1p5. Versions 1.3.x were officially development versions and these were released over a period of 10 years starting from the
year 2000. The final version in the 1.3.x series was 1.3.40, but in truth the 1.3.x series had been stable for many years. An official stable version was released along with the decision to make
SWIG license changes and this gave rise to version 2.0.0 in 2010. Version 3.0.0 was released in 2014 focusing on adding C++11 support and C++ nested classes. Version 4.0.0 was released

Sections
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in 2019 to add in Doxygen support. Some target languages were disabled as part of a clean up and others were given a new status of either ‘Supported' or 'Experimental’.

1.3 SWIG License

The LICENSE file shipped with SWIG in the top level directory contains the SWIG license. For further insight into the license including the license of SWIG's output code, please visit the SWIG
legal page - http://www.swig.org/legal.html.

The license was clarified in version 2.0.0 so that the code that SWIG generated could be distributed under license terms of the user's choice/requirements and at the same time the SWIG
source was placed under the GNU General Public License version 3.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.or

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and implementation tricks.

You can also subscribe to the swig-user mailing list by visiting the page

http://www.swig.org/mail.html

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and future work.

Git and Subversion access to the latest version of SWIG is also available. More information about this can be obtained at:

SWIG Bleeding Edge

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages such as Tcl, Python, and Perl. A detailed knowledge of these
scripting languages is not required although some familiarity won't hurt. No prior experience with building C extensions to these languages is required---after all, this is what SWIG does
automatically. However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language extensions is somewhat more complicated than
writing a normal C program.

Over time SWIG releases have become significantly more capable in their C++ handling--especially support for advanced features like namespaces, overloaded operators, and templates.
Whenever possible, this manual tries to cover the technicalities of this interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost
certainly want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining chapters are devoted to specific SWIG language modules and are
self contained. Thus, if you are using SWIG to build Python interfaces, you can probably skip to that chapter and find almost everything you need to know.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction” which contains a few simple examples. These examples contain about 95% of everything you need to know to use SWIG. After that,
simply use the language-specific chapters as a reference. The SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards compatibility

If you are a previous user of SWIG, don't expect SWIG to provide complete backwards compatibility. Although the developers strive to the utmost to keep backwards compatibility, this isn't
always possible as the primary goal over time is to make SWIG better---a process that would simply be impossible if the developers are constantly bogged down with backwards compatibility
issues. Potential incompatibilities are clearly marked in the detailed release notes.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION preprocessor symbol which holds the version of SWIG being
executed. SWIG_VERSION is a hexadecimal integer such as 0x010311 (corresponding to SWIG-1.3.11). This can be used in an interface file to define different typemaps, take advantage of
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined SWIG_VERSION since SWIG-1.3.11.

1.9 Release notes

The CHANGES.current, CHANGES and RELEASENOTES files shipped with SWIG in the top level directory contain, respectively, detailed release notes for the current version, detailed
release notes for previous releases and summary release notes from SWIG-1.3.22 onwards.

1.10 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people working in their spare time. If you have benefitted from using SWIG, please consider Donating
to SWIG to keep development going. There have been a large varied number of people who have made contributions at all levels over time. Contributors are mentioned either in the
COPYRIGHT file or CHANGES files shipped with SWIG or in submitted bugs.

1.11 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may introduce bugs. To report a bug, either send mail to the SWIG
developer list at the swig-devel mailing list or report a bug at the SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core
dump occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper code. We can only fix bugs if we know about them.

1.12 Installation
1.12.1 Windows installation

Please see the dedicated Windows chapter for instructions on installing SWIG on Windows and running the examples. The Windows distribution is called swigwin and includes a prebuilt SWIG
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executable, swig.exe, included in the top level directory. Otherwise it is exactly the same as the main SWIG distribution. There is no need to download anything else.

1.12.2 Unix installation

These installation instructions are for using the distributed tarball, for example, swig-3.0.8.tar.gz. If you wish to build and install from source on Github, extra steps are required. Please
see the Bleeding Edge page on the SWIG website.

You must use GNU make to build and install SWIG.

PCRE needs to be installed on your system to build SWIG, in particular pcre-config must be available. If you have PCRE headers and libraries but not pcre-config itself or, alternatively, wish to
override the compiler or linker flags returned by pcre-config, you may set PCRE_LIBS and PCRE_CFLAGS variables to be used instead. And if you don't have PCRE at all, the configure script
will provide instructions for obtaining it.

To build and install SWIG, simply type the following:

$ ./configure
$ make
$ make install

By default SWIG installs itself in /usr/local. If you need to install SWIG in a different location or in your home directory, use the --prefix option to . /configure. For example:

$ ./configure --prefix=/home/yourname/projects
$ make
$ make install

Note: the directory given to —--prefix must be an absolute pathname. Do not use the ~ shell-escape to refer to your home directory. SWIG won't work properly if you do this.

The INSTALL file shipped in the top level directory details more about using configure. Also try

$ ./configure --help.

The configure script will attempt to locate various packages on your machine including Tcl, Perl5, Python and all the other target languages that SWIG supports. Don't panic if you get 'not
found' messages -- SWIG does not need these packages to compile or run. The configure script is actually looking for these packages so that you can try out the SWIG examples contained in
the 'Examples' directory without having to hack Makefiles. Note that the --without-xxx options, where xxx is a target language, have minimal effect. All they do is reduce the amount of
testing done with ‘make check'. The SWIG executable and library files installed cannot currently be configured with a subset of target languages.

SWIG used to include a set of runtime libraries for some languages for working with multiple modules. These are no longer built during the installation stage. However, users can build them
just like any wrapper module as described in the Modules chapter. The CHANGES file shipped with SWIG in the top level directory also lists some examples which build the runtime library.

Note:

« If you checked the code out via Git, you will have to run . /autogen. sh before . /configure. In addition, a full build of SWIG requires a number of packages to be installed. Full
instructions at SWIG bleeding edge.

1.12.3 Macintosh OS X installation

SWIG is known to work on various flavors of OS X. Follow the Unix installation instructions above. However, as of this writing, there is still great deal of inconsistency with how shared libraries
are handled by various scripting languages on OS X.

Users of OS X should be aware that Darwin handles shared libraries and linking in a radically different way than most Unix systems. In order to test SWIG and run the examples, SWIG
configures itself to use flat namespaces and to allow undefined symbols (-flat_namespace -undefined suppress). This mostly closely follows the Unix model and makes it more likely
that the SWIG examples will work with whatever installation of software you might have. However, this is generally not the recommended technique for building larger extension modules.
Instead, you should utilize Darwin's two-level namespaces. Some details about this can be found here Understanding Two-Level Namespaces.

Needless to say, you might have to experiment a bit to get things working at first.
1.12.4 Testing

If you want to test SWIG after building it, a check can be performed on Unix operating systems. Type the following:

$ make -k check

This step can be performed either before or after installation. The check requires at least one of the target languages to be installed. If it fails, it may mean that you have an uninstalled
language module or that the file '‘Examples/Makefile' has been incorrectly configured. It may also fail due to compiler issues such as a broken C++ compiler. Even if the check fails, there is a
pretty good chance SWIG still works correctly --- you will just have to mess around with one of the examples and some makefiles to get it to work. Some tests may also fail due to missing
dependency packages, eg PCRE or Boost, but this will require careful analysis of the configure output done during configuration.

The test suite executed by the check is designed to stress-test many parts of the implementation including obscure corner cases. If some of these tests fail or generate warning messages,
there is no reason for alarm --- the test may be related to some new SWIG feature or a difficult bug that we're trying to resolve. Chances are that SWIG will work just fine for you. Note that if
you have more than one CPU/core, then you can use parallel make to speed up the check as it does take quite some time to run, for example:

$ make -j2 -k check

Also, SWIG's support for C++ is sufficiently advanced that certain tests may fail on older C++ compilers (for instance if your compiler does not support member templates). These errors are
harmless if you don't intend to use these features in your own programs.

Note: The test-suite currently contains over 600 tests. If you have many different target languages installed and a slow machine, it might take more than an hour to run the test-suite.
1.12.5 Examples
The Examples directory contains a variety of examples of using SWIG and it has some browsable documentation. Simply point your browser to the file "Example/index.html".

The Examples directory also includes Visual C++ project 6 (.dsp) files for building some of the examples on Windows. Later versions of Visual Studio will convert these old style project files
into a current solution file.

2 Introduction

e What is SWIG?
e Why use SWIG?

* Target languages
o Supported status
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o Experimental status
A SWIG example
SWIG interface file

°
o The swig command
°
°

Building a Perl5 module
Building a Python module
o Shortcuts

Supported C/C++ language features
Non-intrusive interface building
Incorporating SWIG into a build system
Hands off code generation
SWIG and freedom

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a nutshell, SWIG is a compiler that takes C/C++ declarations and
creates the wrappers needed to access those declarations from other languages including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing code
and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

Building interpreted interfaces to existing C programs.

Rapid prototyping and application development.

Interactive debugging.

Reengineering or refactoring of legacy software into scripting language components.
Making a graphical user interface (using Tk for example).

Testing of C libraries and programs (using scripts).

Building high performance C modules for scripting languages.

Making C programming more enjoyable (or tolerable depending on your point of view).
Impressing your friends.

Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software without having to get a degree in software engineering. Because of
this, the use of SWIG tends to be somewhat informal and ad-hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL compiler).
Although this style of development isn't appropriate for every project, it is particularly well suited to software development in the small; especially the research and development work that is
commonly found in scientific and engineering projects. However, nowadays SWIG is known to be used in many large open source and commercial projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other programming languages. However, why would anyone want to do that? To
answer that question, it is useful to list a few strengths of C/C++ programming:

« Excellent support for writing programming libraries.

¢ High performance (number crunching, data processing, graphics, etc.).
e Systems programming and systems integration.

e Large user community and software base.

Next, let's list a few problems with C/C++ programming

e Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other libraries).
e Testing is time consuming (the compile/debug cycle).

* Not easy to reconfigure or customize without recompilation.

¢ Modularization can be tricky.

e Security concerns (buffer overflows for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programming languages for different tasks. For instance, writing a
graphical user interface may be significantly easier in a scripting language like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you
need more proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might greatly simplify the task of writing distributed computing
software. The key point is that different programming languages offer different strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect.
Therefore, by combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of software development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C programming model which usually results in programs that resemble
this:

¢ A collection of functions and variables that do something useful.
e Amain() program that starts everything.
¢ A horrible collection of hacks that form some kind of user interface (but which no-one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C program and using the high-level language interface, but not the
tedious and complex chore of making the two languages talk to each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG has such a large user manual ;-).

2.3 Target languages

SWIG in essence is a tool to generate code for making C/C++ code available to various other programming languages. These higher level programming languages are the target languages for
the SWIG code generator and C or C++ are the input languages. A single target language must be specified when SWIG is run. This results in generating code for C/C++ and the specified
target language to interface with each other. SWIG can be invoked multiple times, but with a different target language specified on each invocation. This ability to interface C/C++ to many
different target languages is one of SWIG's core strengths and features.

SWIG is very broadly composed of two components. A core component creates a parse tree from the input ISO C/C++ and SWIG directives (extensions to the C/C++ standards). The parse
tree is then passed to a second component, one of the target language modules for generating code specific to a higher level language. SWIG supports many different target languages.
These target languages are given a status of either Supported or Experimental. This status is provided to indicate the level of maturity to expect when using a particular target language as not
all target languages are fully developed.

The second part of the SWIG documentation contains a chapter for each target level language. Each chapter will state the status (Supported or Experimental) for that language.
2.3.1 Supported status
A target language is given the 'Supported' status when
¢ ltis in a mature, well functioning state.
¢ |t has its own comprehensive chapter in the documentation.
¢ |t passes all of the main SWIG test-suite and has a range of working examples.
¢ |t supports the vast majority of SWIG features.
¢ |t provides strong backwards compatibility between releases.

The above is a short summary and further details are outlined in the Supported status section in the Extending chapter. The good news is that all the well-known and most popular languages
have this status.

2.3.2 Experimental status
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A target language is given the 'Experimental’ status when
¢ ltis of sub-standard quality, failing to meet the above 'Supported' status.
¢ Itis somewhere between the mid to mature stage of development.
¢ |t does not guarantee any backwards compatibility between releases.
e |tis in need of help to finish development.
Anyone using an experimental target language is strongly urged to assist with development of the target language module if they wish to use it.

SWIG displays a warning when an experimental target language is used in order to set expectations and emphasize the experimental status of the target language. The usual warning
suppression techniques can be used if required.

The above is a short summary and further details are outlined in the Experimental status section in the Extending chapter.
2.4 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:

/* File : example.c */
double My variable = 3.0;

/* Compute factorial of n */
int fact(int n) {

if (n <= 1)
return 1;
else

return n*fact(n-1);

}

/* Compute n mod m */
int my mod(int n, int m) {
return(n % m);

}

Suppose that you wanted to access these functions and the global variable My_variable from Tcl. You start by making a SWIG interface file as shown below (by convention, these files carry
a .i suffix) :

2.4.1 SWIG interface file

/* File : example.i */

%module example

34

/* Put headers and other declarations here */
extern double My variable;

extern int fact(int);
extern int my_mod(int n, int m);
%}

extern double My variable;
extern int fact(int);
extern int my_mod(int n, int m);

The interface file contains ISO C function prototypes and variable declarations. The $module directive defines the name of the module that will be created by SWIG. The ${ %} block provides
a location for inserting additional code, such as C header files or additional C declarations, into the generated C wrapper code.

2.4.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig -tcl example.i

unix > gec -c -fpic example.c example wrap.c -I/usr/local/include
unix > gcc -shared example.o example wrap.o -o example.so
unix > teclsh

% load ./example.so

% fact 4

24

% my mod 23 7

2

% expr $My_ variable + 4.5

75

%

The swig command produced a new file calledexample_wrap.c that should be compiled along with theexample. c file. Most operating systems and scripting languages now support
dynamic loading of modules. In our example, our Tcl module has been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need to worry about it.

2.4.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig -perl5 example.i

unix > gcc -c example.c example wrap.c \
-I/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > 1ld -G example.o example wrap.o -o example.so # This is for Solaris

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my mod(23, 7), "\n";

print $example::My variable + 4.5, "\n";

<ctrl-d>

24

2

75

unix >

2.4 A SWIG example
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2.4.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig -python example.i

unix > gec -c -fpic example.c example wrap.c -I/usr/local/include/python2.0
unix > gcc -shared example.o example wrap.o -o _example.so

unix > python

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import example

>>> example.fact(4)

24

>>> example.my mod (23, 7)

2

>>> example.cvar.My variable + 4.5

7.5

2.4.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do without it. For example, you could also build a Perl5 module by just
running SWIG on the C header file and specifying a module name as follows

unix > swig -perl5 -module example example.h

unix > gcc -c example.c example wrap.c \
-I/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > 1ld -G example.o example wrap.o -o example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my mod(23, 7), "\n";

print $example::My variable + 4.5, "\n";

<ctrl-d>

24

2

765

2.5 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples have been shown, SWIG is quite capable in supporting most of
C++. Some of the major features include:

Full C99 preprocessing.

All ISO C and C++ datatypes.
Functions, variables, and constants.
Classes.

Single and multiple inheritance.
Overloaded functions and methods.
Overloaded operators.

C++ templates (including member templates, specialization, and partial specialization).
Namespaces.

Variable length arguments.

C++ smart pointers.

Most of C++11 is also supported. Details are in the C++11 chapter. C++14 support is covered in theC++14 chapter. C++17 support is covered in theC++17 chapter.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools. SWIG not only parses C++, it implements the full C++ type system
and it is able to understand C++ semantics. SWIG generates its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able to handle C++ code that stresses the very limits of many C++ compilers.

2.6 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely easy to use with existing packages and promotes software reuse
and modularity. By making the C/C++ code independent of the high level interface, you can change the interface and reuse the code in other applications. It is also possible to support different
types of interfaces depending on the application.

2.7 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external tools/compilers. SWIG is most commonly invoked from within a Makefile,
but is also known to be invoked from popular IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake / Libtool) to configure SWIG use in your project, the SWIG Autoconf macros can be used. The primary macro is ax_pkg_swig, see
http://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig . The ax_python_devel macro is also helpful for generating Python extensions. See the Autoconf Archive for
further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross-platform, open-source build manager with built in support for SWIG. CMake can detect the SWIG
executable and many of the target language libraries for linking against. CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows
easy cross platform SWIG development. It can also generate the custom commands necessary for driving SWIG from IDEs and makefiles. All of this can be done from a single cross platform
input file. The following example is a CMake input file for creating a Python wrapper for the SWIG interface file, example.i:

# This is a CMake example for Python

FIND_ PACKAGE (SWIG REQUIRED)
INCLUDE (${SWIG_USE_FILE})

FIND_PACKAGE (PythonLibs)
INCLUDE_DIRECTORIES (${PYTHON_INCLUDE_ PATH})

INCLUDE_DIRECTORIES (${CMAKE_CURRENT_SOURCE_DIR})

SET(CMAKE_SWIG_FLAGS "")

2.5 Supported C/C++ language features


http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig
http://www.gnu.org/software/autoconf-archive/
https://cmake.org

SWIG-4.0 Documentation

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES PROPERTIES(example.i PROPERTIES SWIG_FLAGS "-includeall")
SWIG_ADD_ MODULE (example python example.i example.cxx)

SWIG_LINK LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke SWIG and compile the generated C++ files into _example.so
(UNIX) or _example.pyd (Windows). For other target languages on Windows a dll, instead of a .pyd file, is usually generated.

2.8 Hands off code generation

SWIG is designed to produce working code that needs no hand-modification (in fact, if you look at the output, you probably won't want to modify it). You should think of your target language
interface being defined entirely by the input to SWIG, not the resulting output file. While this approach may limit flexibility for hard-core hackers, it allows others to forget about the low-level
implementation details.

2.9 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written with a certain "philosophy" about programming---namely that
programmers are smart and that tools should just stay out of their way. Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use
SWIG to go well beyond “shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedom may be exactly what is needed to work with complicated
and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At its core, SWIG tries to distill even the most advanced C++ code down to
a small well-defined set of interface building techniques based on ISO C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer's way----the last thing any developer wants to do is to spend their time
debugging the output of a tool that relies on non-portable or unreliable programming features. Dependencies are often a source of incompatibilities and problems and so additional third party
libraries are not used in the generated code. SWIG will also generally avoid generating code that introduces a dependency on the C++ Standard Template Library (STL). SWIG will generate
code that depends on the C libraries though.

3 Getting started on Windows

¢ Installation on Windows
o Windows Executable

* SWIG Windows Examples
o Instructions for using the Examples with Visual Studio
.

= Rub
o Instructions for using the Examples with other compilers
* SWIG on Cygwin and MinGW
o Building swig.exe on Windows
= Building swig.exe using MinGW and MSYS
= Building swig.exe using Cygwin
= Building swig.exe alternatives
o Running the examples on Windows using Cygwin
* Microsoft extensions and other Windows quirks

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as building the SWIG executable. Usage within the Unix like
environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps are:

* Download the swigwin zip package from theSWIG website and unzip into a directory. This is all that needs downloading for the Windows platform.
e Set environment variables as described in theSWIG Windows Examples section in order to run examples using Visual C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows 32-bit executable, swig.exe, which will run on both 32-bit and 64-bit versions of Windows. If you want to build your own swig.exe have a
look at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has a few Visual C++ project files (.dsp files). These were produced
by Visual C++ 6. Newer versions of Visual Studio should be able to open and convert these project files. Each C# example comes with a Visual Studio 2005 solution and associated project
files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG in a custom build rule for the SWIG interface (.i) file. Alternatively run the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).
3.2.1 Instructions for using the Examples with Visual Studio
Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages require some environment variables to be set before running Visual

C++. Note that Visual C++ must be re-started to pick up any changes in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the
Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with their current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control Panel and System properties, but this depends on which flavour
of Windows you are running. If you don't want to use environment variables then change all occurrences of the environment variables in the .dsp files with hard coded values. If you are
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.2.1.1C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solution file in Visual Studio .NET 2003 or later, select Release Build,
and do a Rebuild All from the Build menu. The accompanying C# and C++ project files are automatically used by the solution file.

3.2.1.2 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
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JAVA_BIN : Set this to the bin directory containing javac.exe
Example using JDK1.3:

JAVA_INCLUDE: D:\jdkl.3\include
JAVA BIN: D:\jdkl.3\bin

3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\1ib\CORE
PERL5_LIB: D:\nsPerl5.004_04\1ib\CORE\perl.lib

3.2.1.4 Python

PYTHON_INCLUDE : Set this to the directory that contains Python.h
PYTHON_LIB : Set this to the Python library including path for linking

Example using Python 2.1.1:

PYTHON_INCLUDE: D: \python21\include
PYTHON_LIB: D:\python21\libs\python21l.lib

3.2.1.5TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3

TCL_INCLUDE: D:\tcl\include

TCL_LIB: D:\tcl\lib\tcl83.1lib
3.216R

R_INCLUDE : Set this to the directory containing R.h
R_LIB: Set this to the R library (Rdll.lib) including path for linking. The library needs to be built as described in the R README.packages file (the pexports.exe approach is the easiest).

Example using R 2.5.1:

R_INCLUDE: C:\Program Files\R\R-2.5.1\include
R_LIB: C:\Program Files\R\R-2.5.1\bin\Rd1ll.1lib

3.2.1.7 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:
RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586-mswin32
RUBY_LIB: D:\ruby\lib\mswin32-rubyl6.lib

3.2.2 Instructions for using the Examples with other compilers

If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a section in each of the language modules detailing what needs
setting up using Visual C++ which may be of some guidance. Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free with gcc, an ISO C/C++ compiler. However, this is not a
recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows

If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not necessary to use the supplied swig.exe. This information is
provided for those that want to modify the SWIG source code in a Windows environment. Normally this is not needed, so most people will want to ignore this section.

3.3.1.1 Building swig.exe using MinGW and MSYS

The short abbreviated instructions follow...

¢ Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.
¢ Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW command prompt.

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG from Github follow... Note that the instructions for obtaining SWIG
from Github are also online at SWIG Bleeding Edge.

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default installation directories.

1. Download the following packages from the MinGW download page or MinGW SourceForge download page. Note that at the time of writing, the majority of these are in the Current
release list and some are in the Snapshot or Previous release list.
°o MinGW-3.1.0-1.exe
o MSYS-1.0.11-2004.04.30-1.exe
o msysDTK-1.0.1.exe
o bison-2.0-MSYS.tar.gz
°
°

msys-autoconf-2.59.tar.bz2
msys-automake-1.8.2.tar.bz2
. Install MinGW-3.1.0-1.exe (C:\MinGW is default location.)
3. Install MSYS-1.0.11-2004.04.30-1.exe. Make sure you install it on the same windows drive letter as MinGW (C:\msys\1.0 is default). In the post install script,
o Answer y to the "do you wish to continue with the post install?"
o Answer y to the "do you have MinGW installed?"
o Type in the folder in which you installed MinGW (C:/MinGW is default)
. Install msysDTK-1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).
. Copy the following to the MSYS install folder (C:\msys\1.0 is default):
o msys-automake-1.8.2.tar.bz2
o msys-autoconf-2.59.tar.bz2
o bison-2.0-MSYS.tar.gz
6. Start the MSYS command prompt and execute:

N

(S0

cd /
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tar -jxf msys-automake-1.8.2.tar.bz2
tar -jxf msys-autoconf-2.59.tar.bz2
tar -zxf bison-2.0-MSYS.tar.gz

7. The very latest development version of SWIG is available from SWIG on Github and can be downloaded as a zip file or if you have Git installed, via Git. Either download the latest Zip file
snapshot and unzip and rename the top level folder to /usr/src/swig. Otherwise if using Git, type in the following:

mkdir /usr/src
cd /usr/src
git clone https://github.com/swig/swig.git

Pitfall note: If you want to place SWIG in a different folder to the proposed /usr/src/swig, do not use MSYS emulated windows drive letters, because the autotools will fail miserably on
those.

8. The PCRE third party library needs to be built next. Download the latest PCRE source tarball, such as pcre-8.10.tar.bz2, from PCRE and place in the /usr/src/swig directory.
Build PCRE as a static library using the Tools/pcre-build.sh script as follows:

cd /usr/src/swig
Tools/pcre-build.sh

9. You are now ready to build SWIG. Execute the following commands to build swig.exe:

cd /usr/src/swig
./autogen.sh
./configure
make

3.3.1.2 Building swig.exe using Cygwin
Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the Unix instructions in the README file in the SWIG root directory.
Note that the Cygwin environment will also allow one to regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen. sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can be added to a Visual C++ project file in order to build swig.exe
from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow
the Unix instructions in the README file in the SWIG root directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++ standard. SWIG parses ISO C/C++ so cannot deal with proprietary
conventions such as __declspec(dllimport), __ stdcall etc. There is a Windows interface file, windows. i, to deal with these calling conventions though. The file also contains
typemaps for handling commonly used Windows specific types such as __int64, BOOL , DWORD etc. Include it like you would any other interface file, for example:

%include <windows.i>

__declspec(dllexport) ULONG __ stdcall foo(DWORD, __ int32);

Note that if you follow Microsoft's recommendation of wrapping the__declspec calls in a preprocessor definition, you will need to make sure that the definition is included by SWIG as well, by
either defining it manually or via a header. For example, if you have specified the preprocessor definition in a header named export_1lib.h and include other headers which depend on it, you
should use the $include directive to include the definition explicitly. For example, if you had a header file, bar . h, which depended on export_1lib.h, your SWIG definition file might look
like:

// bar.i

gmodule bar

%include <windows.i>
%$include "export_lib.h"
%include "bar.h"

where export_lib.h may contain:

// export_lib.h
#define BAR API _ declspec(dllexport)

and bar.h may look like:

// bar.h
#include "export_ lib.h"
BAR_API void bar_function(int, double);

Using the preprocessor to remove BAR_API is a popular simpler solution:

// bar.i
gmodule bar
#define BAR_API
%include "bar.h"
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o Structures and classes
o Proxy classes
e Building scripting language extensions
o Shared libraries and dynamic loadin
o Linking with shared libraries
o Static linking

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

| Scripting Language
2

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality of the C/C++ program is accessed through special scripting
language "commands." If you have ever tried to write your own simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model--the interpreter executes user commands and scripts. However, most of the underlying
functionality is written in a low-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be used for maximal performance and complicated systems
programming tasks. Scripting languages can be used for rapid prototyping, interactive debugging, scripting, and access to high-level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a mechanism for executing commands and accessing variables.
Normally, this is used to implement the builtin features of the language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special "wrapper” function that serves as the glue between the interpreter
and the underlying C function. Then you need to give the interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The next few
sections illustrate the process.

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {

if (n <= 1)
return 1;
else

return n*fact(n-1);

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the glue between the scripting language and the underlying C
function. A wrapper function must do three things :

¢ Gather function arguments and make sure they are valid.

e Call the C function.

¢ Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact () function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp, int argc, char *argv[]) {
int result;
int arg0;
if (argc != 2) {
interp->result = "wrong # args";
return TCL ERROR;
}
arg0 = atoi(argv([1l]);
result = fact(arg0);
sprintf(interp->result, "%d", result);
return TCL_OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually done in an initialization function called by the language when
the module is loaded. For example, adding the above function to the Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
Tcl_CreateCommand(interp, "fact", wrap_fact, (ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);
return TCL_OK;
}

When executed, Tcl will now have a new command called "fact " that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python. Both require special wrappers to be written and both need
additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpreter. For example, suppose you had the following variable:

double Foo = 3.5;

4.1 The two language view of the world
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It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
$Foo = $a + 2.0; # Assignment

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the value of a variable is read, a "get" function is invoked. Similarly,
whenever the value of a variable is changed, a "set" function is called.

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluating a variable such as $Foo might implicitly call the get function.
Similarly, typing $Foo = 4 would call the underlying set function to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0x££0000
#define BLUE 0x0000ff
#define GREEN 0x00£ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN. Virtually all scripting languages provide C functions for creating
variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes
Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and classes present a different problem. This is because the
implementation of structures is largely related to the problem of data representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what

does C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the underlying representation of a structure. For example,

struct Vector {
Vector();
~Vector();
double x, y, z;
}i

can be transformed into the following set of functions :

Vector *new_Vector();
void delete_Vector(Vector *v);

double Vector_x get(Vector
double Vector_y_ get(Vector
double Vector_z_get(Vector

*v);
*v);
*v);

void Vector_ x set(Vector *v, double x);
void Vector_y set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

set v [new_Vector]
Vector_x set $v 3.5
Vector_y get $v
delete Vector $v

90 00 00 o0 of

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know anything about the actual representation of a Vector.
4.2.5 Proxy classes

In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. A proxy class is a special kind of object that gets created in a
scripting language to access a C/C++ class (or struct) in a way that looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C++ definition :

class Vector {
public:
Vector();
~Vector();
double x, y, z;

}i

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For example, in Python, you might want to do this:

>>> v = Vector()
>>> v.x = 3

>>> v.y = 4

>>> v.z = -13
>>> ...

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v->{x} = 3;
$v->{y} = 4;
$v->{z} = -13;

4.1 The two language view of the world
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Finally, in Tcl :

Vector v
v configure -x 3 -y 4 -z -13

When proxy classes are used, two objects are really at work--one in the scripting language, and an underlying C/C++ object. Operations affect both objects equally and for all practical
purposes, it appears as if you are simply manipulating a C/C++ object.

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itself. There are two primary approaches for doing this. The
preferred technique is to build a dynamically loadable extension in the form of a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to
it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the procedure for a few common platforms is shown below:

# Build a shared library for Solaris
gcc -fpic -c example.c example wrap.c -I/usr/local/include
1d -G example.o example wrap.o -o example.so

# Build a shared library for Linux
gcc -fpic -c example.c example wrap.c -I/usr/local/include
gcc -shared example.o example wrap.o -o example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). This will import your module and allow you to start using it. For
example:

% load ./example.so
% fact 4
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%

When working with C++ codes, the process of building shared libraries may be more complicated--primarily due to the fact that C++ modules may need additional code in order to operate
correctly. On many machines, you can build a shared C++ module by following the above procedures, but changing the link line to the following :

c++ -shared example.o example wrap.o -o example.so

4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your machine. In order for the extension to work, it needs to be able
to find all of these libraries at run-time. Otherwise, you may get an error such as the following :

>>> import graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py", line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "1ibgraph.so" that the system was unable to locate. To fix this problem, there are
a few approaches you can take.

¢ Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done with a special linker flag such as -R, -rpath, etc. This is not
implemented in a standard manner so read the man pages for your linker to find out more about how to set the search path for shared libraries.

Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operation on non-Unix platforms.

Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before running Python. Although this is an easy solution, it is not
recommended. Consider setting the path using linker options instead.

4.3.3 Static linking

With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a short main program that adds your customized commands to the
language and starts the interpreter. You then link your program with a library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extensions. In fact, there are very few practical reasons for doing this--
consider using shared libraries instead.
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o SWIG Output
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o Run time pointer type checking
o Derived types, structs, and classes
o Undefined datatypes
o Typedef
e Other Practicalities
o Passing structures by value
Return by value
Linking to structure variables
Linking to char *
Arrays
Creating read-only variables
Renaming and ignoring declarations
= Simple renaming of specific identifiers
= Advanced renaming support
= Limiting global renaming rules
= |gnoring everything then wrapping a few selected symbols
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Adding member functions to C structures
Nested structures
Other things to note about structure wrapping
* Code Insertion

o The output of SWIG

o Code insertion blocks
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o |nitialization blocks
* An Interface Building Strategy

o Preparing a C program for SWIG

o The SWIG interface file

o Why use separate interface files?
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Getting the right header files
What to do with main()

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ISO C declarations. C++ support is described in the next chapter. However,
C++ programmers should still read this chapter to understand the basics. Specific details about each target language are described in later chapters.

5.1 Running SWIG

To run SWIG, use the swig command with options and a filename like this:

swig [ options ] filename

where filename is a SWIG interface file or a C/C++ header file. Full help can be seen by running swig -help. Below is the common set of options that can be used. Additional options are
also defined for each target language. A full list can be obtained by running swig -<lang> -help for language <lang> specific options, for example, swig -ruby -help for Ruby.

Supported Target Language Options

-csharp - Generate C# wrappers

-d - Generate D wrappers

-go - Generate Go wrappers

-guile - Generate Guile wrappers
-java - Generate Java wrappers
-javascript - Generate Javascript wrappers
-lua - Generate Lua wrappers
-octave - Generate Octave wrappers
-perl5 - Generate Perl 5 wrappers
-php7 - Generate PHP 7 wrappers
-python - Generate Python wrappers

-r - Generate R (aka GNU S) wrappers
-ruby - Generate Ruby wrappers
-scilab - Generate Scilab wrappers
-tcl8 - Generate Tcl 8 wrappers

—-xml - Generate XML wrappers

Experimental Target Language Options
-mzscheme - Generate MzScheme/Racket wrappers
—ocaml - Generate OCaml wrappers

General Options

-addextern - Add extra extern declarations

-c++ - Enable C++ processing

-co <file> - Check <file> out of the SWIG library

—-copyctor - Automatically generate copy constructors wherever possible

-cpperraswarn - Treat the preprocessor #error statement as #warning (default)

-cppext <ext> - Change file extension of generated C++ files to <ext>
(default is cxx)

-copyright - Display copyright notices

-debug-classes - Display information about the classes found in the interface

-debug-module <n>- Display module parse tree at stages 1-4, <n> is a csv list of stages
-debug-symtabs - Display symbol tables information

-debug-symbols - Display target language symbols in the symbol tables

-debug-csymbols - Display C symbols in the symbol tables

-debug-lsymbols - Display target language layer symbols

-debug-tags - Display information about the tags found in the interface
-debug-template - Display information for debugging templates

-debug-top <n> - Display entire parse tree at stages 1-4, <n> is a csv list of stages
-debug-typedef - Display information about the types and typedefs in the interface

-debug-typemap - Display typemap debugging information
-debug-tmsearch - Display typemap search debugging information

-debug-tmused - Display typemaps used debugging information
-directors - Turn on director mode for all the classes, mainly for testing
-dirprot - Turn on wrapping of protected members for director classes (default)

5.1 Running SWIG
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-D<symbol> - Define a symbol <symbol> (for conditional compilation)

-E - Preprocess only, does not generate wrapper code

-external-runtime [file] - Export the SWIG runtime stack

-fakeversion <v>- Make SWIG fake the program version number to <v>

-fcompact - Compile in compact mode

-features <list>- Set global features, where <list> is a comma separated list of
features, eg -features directors,autodoc=1
If no explicit value is given to the feature, a default of 1 is used

-fastdispatch - Enable fast dispatch mode to produce faster overload dispatcher code
-Fmicrosoft - Display error/warning messages in Microsoft format

-Fstandard - Display error/warning messages in commonly used format

-fvirtual - Compile in virtual elimination mode

-help - Display help

-I- Don't search the current directory
-I<dir> Look for SWIG files in directory <dir>
-ignoremissing - Ignore missing include files

-importall Follow all #include statements as imports
-includeall Follow all #include statements

-1<ifile> - Include SWIG library file <ifile>

—-Mmacroerrors - Report errors inside macros
-makedefault - Create default constructors/destructors (the default)
-M - List all dependencies

-MD - Is equivalent to "-M -MF <file>', except "-E' is not implied

-MF <file> - Generate dependencies into <file> and continue generating wrappers
-MM - List dependencies, but omit files in SWIG library
-MMD - Like “-MD', but omit files in SWIG library
-module <name> - Set module name to <name>
-MP - Generate phony targets for all dependencies
-MT <target> - Set the target of the rule emitted by dependency generation
-nocontract - Turn off contract checking
-nocpperraswarn - Do not treat the preprocessor #error statement as #warning
-nodefault - Do not generate default constructors nor default destructors
-nodefaultctor - Do not generate implicit default constructors
-nodefaultdtor - Do not generate implicit default destructors
-nodirprot - Do not wrap director protected members
-noexcept - Do not wrap exception specifiers
-nofastdispatch - Disable fast dispatch mode (default)
-nopreprocess - Skip the preprocessor step
-notemplatereduce - Disable reduction of the typedefs in templates
-0 - Enable the optimization options:
-fastdispatch -fvirtual
-0 <outfile> - Set name of C/C++ output file to <outfile>
-oh <headfile> - Set name of C++ output header file for directors to <headfile>
-outcurrentdir - Set default output dir to current dir instead of input file's path
—outdir <dir> - Set language specific files output directory to <dir>
-pcreversion - Display PCRE version information
-small - Compile in virtual elimination and compact mode
-swiglib - Report location of SWIG library and exit
-templatereduce - Reduce all the typedefs in templates
-v - Run in verbose mode
-version - Display SWIG version number
-Wall - Remove all warning suppression, also implies -Wextra
-Wallkw - Enable keyword warnings for all the supported languages
-Werror - Treat warnings as errors
-Wextra - Adds the following additional warnings: 202,309,403,405,512,321,322
-w<list> - Suppress/add warning messages, eg -w401,+321 - see Warnings.html
-xmlout <file> - Write XML version of the parse tree to <file> after normal processing

Arguments may also be passed in a command-line options file (also known as a response file) which is useful if they exceed the system command line length limit. To do this, put the
arguments in a file, then provide the file name prefixed with @ like so:

swig @file

The options read from the file are inserted in place of the file option. If the file does not exist, or cannot be read, then the option will be treated literally and not removed.
Options in the file are separated by whitespace. A whitespace character may be included in an option by surrounding the entire option in either single or double quotes. Any character

(including a backslash) may be included by prefixing the character to be included with a backslash. The file may itself contain additional @ £ile options; any such options will be processed
recursively.

5.1.1 Input format
As input, SWIG expects a file containing ISO C/C++ declarations and special SWIG directives. More often than not, this is a special SWIG interface file which is usually denoted with a special
.1 or .swg suffix. In certain cases, SWIG can be used directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you might not

want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule

3{

#include "myheader.h"

%}

// Now list ISO C/C++ declarations
int foo;

int bar(int x);

The module name is supplied using the special $module directive. Modules are described further in the Modules Introduction section.

Everything inthe ${ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is almost always used to include header files and other declarations
that are required to make the generated wrapper code compile. It is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not
automatically appear in the generated wrapper code---therefore you need to make sure you include the proper header files inthe ${ ... %} section. It should be noted that the text enclosed

in%{ ... %} isnotparsed or interpreted by SWIG. The %{...%} syntax and semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools
such as yacc or bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may generate some additional files depending on the target language. By
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default, an input file with the name file.1i is transformed into a filefile_wrap.c or file_wrap.cxx (depending on whether or not the -c++ option has been used). The name of the output
C/C++ file can be changed using the -o option. In certain cases, file suffixes are used by the compiler to determine the source language (C, C++, etc.). Therefore, you have to use the -o
option to change the suffix of the SWIG-generated wrapper file if you want something different than the default. For example:

$ swig -c++ -python -o example wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct an extension module for the target scripting language. SWIG is not a stub compiler nor is it usually
necessary to edit the output file (and if you look at the output, you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of your
C/C++ program to create a shared library.

For many target languages SWIG will also generate proxy class files in the target language. The default output directory for these language specific files is the same directory as the generated
C/C++ file. This can be modified using the —outdir option. For example:

$ swig -c++ -python -outdir pyfiles -o cppfiles/example wrap.cpp example.i

If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

If the —outcurrentdir option is used (without -o) then SWIG behaves like a typical C/C++ compiler and the default output directory is then the current directory. Without this option the
default output directory is the path to the input file. If o and ~outcurrentdir are used together, —outcurrentdir is effectively ignored as the output directory for the language files is the
same directory as the generated C/C++ file if not overridden with —outdir.

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to generate documentation files. However, this feature is currently
under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor features are supported including file inclusion, conditional compilation
and macros. However, #include statements are ignored unless the-includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes

used to process raw C header files. In this case, you usually only want the extension module to include functions in the supplied header file rather than everything that might be included by that
header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %{ . . . $} block. In addition, the preprocessor includes a number of macro handling enhancements that
make it more powerful than the normal C preprocessor. These extensions are described in the "Preprocessor" chapter.

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal C declarations. These directives are used to give SWIG hints or
to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG directives can be included in C header files using conditional
compilation like this:

/* header.h --- Some header file */

/* SWIG directives -- only seen if SWIG is running */
#ifdef SWIG

gmodule foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.
5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of these limitations pertain to very complicated type declarations and
certain advanced C++ features. Specifically, the following features are not currently supported:

* Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even though this is legal C):

/* Non-conventional placement of storage specifier (extern) */
const int extern Number;

/* Extra declarator grouping */
Matrix (foo); // A global variable

/* Extra declarator grouping in parameters */
void bar(Spam (Grok) (Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming books. However, if you're feeling particularly obfuscated, you can
certainly break SWIG (although why would you want to?).

¢ Running SWIG on C++ source files (the code in a .C, .cpp or .cxx file) is not recommended. The usual approach is to feed SWIG header files for parsing C++ definitions and declarations.
The main reason is if SWIG parses a scoped definition or declaration (as is normal for C++ source files), it is ignored, unless a declaration for the symbol was parsed earlier. For example

/* bar not wrapped unless foo has been defined and

the declaration of bar within foo has already been parsed */
int foo::bar(int) {

.. whatever ...

}

¢ Certain advanced features of C++ such as nested classes are not yet fully supported. Please see the C++ Nested classes section for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...

5.1 Running SWIG
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#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with incomplete specifications and to be very permissive in its handling of
C/C++ datatypes (e.g., SWIG can generate interfaces even when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to
implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex declarations (for the truly curious, the primary complication in the
implementation is that the SWIG parser does not utilize a separate typedef-name terminal symbol as described on p. 234 of K&R).

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be used in a C program. For example, consider the following interface
file:

%module example

%inline %{

extern double sin(double x);

extern int strcmp(const char *, const char *);
extern int Foo;

%}

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin() and stremp( ), a global variable Foo, and two constants STATUS and VERSION. When SWIG creates an extension module, these declarations are
accessible as scripting language functions, variables, and constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
-1

% puts $Foo

42

% puts S$STATUS

50

% puts $VERSION
1.1

Or in Python:

>>> example.sin(3)

5.2335956

>>> example.strcmp('Dave', 'Mike’')
-1

>>> print example.cvar.Foo

42

>>> print example.STATUS

50

>>> print example.VERSION

1.1

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle differences between languages, run-time environments, and
semantics, it is not always possible to do so. The next few sections describe various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally, scripting languages provide a more limited set of primitive types than
C. Therefore, this conversion process involves a certain amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following list shows all of the C datatypes that SWIG will convert to and
from integers in the target language:

int

short

long

unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16 bit short in C may be promoted to a 32 bit integer. When
integers are converted in the other direction, the value is cast back into the original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype is mapped as a one-character ASCI!I string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64-bit long integer may lead to truncation errors. Similar problems
may arise with 32 bit unsigned integers (which may appear as large negative numbers). As a rule of thumb, the int datatype and all variations ofchar and short datatypes are safe to use.

Forunsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long usually exceeds the integer precision available in the target
language. In certain modules such as Tcl and Perl5, long long integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow
long long values to be used in arithmetic expressions. It should also be noted that although 1ong long is part of the ISO C99 standard, it is not universally supported by all C compilers.
Make sure you are using a compiler that supports 1long long before trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

5.2 Wrapping Simple C Declarations
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Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost always a C double. The rarely used datatype of long double is not
supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language it shows up as a tiny string containing the character value. When
converting the value back into C, SWIG takes a character string from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value “f'.

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8-bit character string in the target scripting language. SWIG converts character strings in the target
language to NULL terminated strings before passing them into C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG typemap. See the chapter on Typemaps for details about this.

At this time, SWIG provides limited support for Unicode and wide-character strings (the C wchar_t type). Some languages provide typemaps for wchar_t, but bear in mind these might not be
portable across different operating systems. This is a delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages. For those
scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit representation such as UTF-8 that can be mapped to the char * type (in which case the
SWIG interface will probably work). If the program you are wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS-2 vs. UCS-4). You may need to write some special conversion functions.

5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

$module example
double foo;

results in a scripting language variable like this:

print cvar.foo

# Tcl

set foo [3.5] ;# Set foo to 3.5

puts $foo ;# Print the value of foo
# Python

cvar.foo = 3.5 # Set foo to 3.5

# Print value of foo

# Perl
$foo = 3.5;
print $foo, "\n";

# Set foo to 3.5
# Print value of foo

# Ruby
Module.foo = 3.5
print Module.foo, "\n"

# Set foo to 3.5
# Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every attempt to make global variables work like scripting language
variables, it is not always possible to do so. For instance, in Python, all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables
are accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the Java module generates a pair of functions double
get_foo() and set_foo(double val) that are used to manipulate the value.

Finally, if a global variable has been declared as const, it only supports read-only access. Note: this behavior is new to SWIG-1.3. Earlier versions of SWIG incorrectly handled const and
created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special $constant directive. The following interface file shows a few valid constant declarations :

#define I_CONST 8 // An integer constant
#define PI 3.14159 // A Floating point constant
#define S_CONST "hello world" // A string constant

#define NEWLINE ‘\n' // Character constant
enum boolean {NO=0, YES=1};
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};
%constant double BLAH = 42.37;
#define PI_4 PI/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to be floating point. In addition, SWIG must be able to fully
resolve all of the symbols used in a #define in order for a constant to actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are
definitely not meant to be part of the scripting language interface. For example:

#define EXTERN extern

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will not create constants for macros unless the value can be completely
determined by the preprocessor. For instance, in the above example, the declaration

#define PI_4 PI/4

defines a constant because PI was already defined as a constant and the value is known. However, for the same conservative reasons even a constant with a simple cast will be ignored, such
as

#define F_CONST (double) 5 // A floating point constant with cast

This logic can lead to false attempts at converting #define into $constant though. For example the following case does not have any undefined symbols within the macro:

// For indicating pure virtual functions such as: virtual void f() PURE;

5.2 Wrapping Simple C Declarations
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#define PURE = 0

A warning is issued:

pure.h:1: Warning 305: Bad constant value (ignored).

In such cases simply ignore the warning or suppress it using the normal warning suppression techniques.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output file and lets the C compiler perform the final evaluation (SWIG
does perform a limited form of type-checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header file or in the ${ %} block). SWIG only translates the enumeration
into code needed to add the constants to a scripting language. It needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The $constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not usually needed for simple values, it is more useful when working
with pointers and other more complex datatypes. Typically, $constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations--especially when it is mixed with pointers and other type modifiers. In fact, previous
versions of SWIG handled const incorrectly--a situation that SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a declaration happens to be declared as const, it is wrapped as a read-
only variable. To tell if a variable is const or not, you need to look at the right-most occurrence of the const qualifier (that appears before the variable name). If the right-most const occurs
after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a; // A constant character

char const b; // A constant character (the same)

char *const c; // A constant pointer to a character

const char *const d; // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e; // A pointer to a constant character. The pointer
// may be modified.

In this case, the pointer e can change---it's only the value being pointed to that is read-only.
Please note that for const parameters or return types used in a function, SWIG pretty much ignores the fact that these are const, see the section on const-correctness for more information.

Compatibility Note: One reason for changing SWIG to handleconst declarations as read-only variables is that there are many situations where the value of a const variable might change.
For example, a library might export a symbol as const in its public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being pointed to can be modified--it's only the pointer itself that is
constant. In an embedded system, a const declaration might refer to a read-only memory address such as the location of a memory-mapped 1/O device port (where the value changes, but
writing to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the new interpretation ofconst as “read-only" is simple and
exactly matches the actual semantics of const in C/C++. If you really want to create a constant as in older versions of SWIG, use the $constant directive instead. For example:

%constant double PI = 3.14159;

or

#ifdef SWIG

#define const %constant
#endif

const double foo = 3.4;
const double bar = 23.4;
const int spam = 42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *
Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed from a scripting language to a C char *, the pointer usually
points to string data stored inside the interpreter. It is almost always a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python,
strings are supposed to be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like this:

char *strcat(char *s, const char *t)

Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your application to crash with a segmentation fault or other memory related
problem. This is because s refers to some internal data in the target language---data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects

Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these datatypes.
5.3.1 Simple pointers

Pointers to primitive C datatypes such as

5.3 Pointers and complex objects

31



SWIG-4.0 Documentation

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simply encodes the pointer itself into a representation that contains
the actual value of the pointer and a type-tag. Thus, the SWIG representation of the above pointers (in Tcl), might look like this:

10081012_p_int
1008e124_ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to other C functions as needed. For all practical purposes, the scripting
language interface works in exactly the same way as you would use the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown look like hexadecimal addresses, the numbers used may differ
from the actual machine address (e.g., on little-endian machines, the digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high-level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does not do this:

e There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, an int * may indeed be an array of integers, but if it contains ten

million elements, converting it into a list object is probably a bad idea.
¢ The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an array at all--perhaps it is an output value!
« By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to error.

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile-time type checking in the C/C++ compiler. To prevent errors, a type signature
is encoded into all pointer values and is used to perform run-time type checking. This type-checking process is an integral part of SWIG and can not be disabled or modified without using
typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive a pointer. Although this has the potential to cause a crash,
NULL pointers are also sometimes used as sentinel values or to denote a missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs make heavy use of pointers and SWIG can use the type-checked
pointer mechanism already present for handling pointers to basic datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

gmodule fileio

FILE *fopen(char *, char *);

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE ¥);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE ¥*);
void *malloc(int nbytes);

void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you wrapped this module into Python, you can use the functions just like
you expect :

# Copy a file
def filecopy(source, target):
f1 = fopen(source, "r")
f2 = fopen(target, "w")
buffer = malloc(8192)
nbytes = fread(buffer, 8192, 1, £f1)
while (nbytes > 0):
fwrite(buffer, 8192, 1, £2)
nbytes = fread(buffer, 8192, 1, f1)
free(buffer)

In this case £1, £2, and buf fer are all opaque objects containing C pointers. It doesn't matter what value they contain--our program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose the following function appeared in a SWIG input file:

void matrix multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This allows SWIG to generate interfaces from only partial or limited
information. In some cases, you may not care what a Matrix really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type names. However, all unspecified types are internally handled as
pointers to structures or classes! For example, consider the following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described shortly). As a result, the scripting interface might behave strangely.
For example:

foo(40);

5.3 Pointers and complex objects
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TypeError: expected a _p size t.

The only way to fix this problem is to make sure you properly declare type names using typedef.
5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:

typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either need to be defined in an included header file or placed in the
declarations section like this:

3{

/* Include in the generated wrapper file */
typedef unsigned int size_t;

%}

/* Tell SWIG about it */

typedef unsigned int size_t;

or

%inline %{
typedef unsigned int size_t;
%}

In certain cases, you might be able to include other header files to collect type information. For example:

gmodule example
%import "sys/types.h"

In this case, you might run SWIG as follows:

$ swig -I/usr/include -includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a variety of non-standard C coding extensions (e.g., such as special
directives to GCC). Unless you exactly specify the right include directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run-time type checking. For instance, if you use the above typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * orsize t *.
5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C programs use idioms that are somewhat more difficult to map to a
scripting language interface. This section describes some of these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:

double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
return dot_product(x, y);

}

In the target language, the dot_product () function now accepts pointers to Vectors instead of Vectors. For the most part, this transformation is transparent so you might not notice.
5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:

Vector cross_product(Vector vl, Vector v2);

This function wants to return Vvector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *vl, Vector *v2) {
Vector x = *vl;
Vector y = *v2;
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(x, y)i;
return result;

or if SWIG was run with the —c++ option:

5.4 Other Practicalities
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Vector *wrap_cross(Vector *vl, Vector *v2) {
Vector x = *vl;
Vector y = *v2;
Vector *result = new Vector(cross(x, y)); // Uses default copy constructor
return result;

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when it is no longer in use. Clearly, this will leak memory if you are
unaware of the implicit memory allocation and don't take steps to free the result. That said, it should be noted that some language modules can now automatically track newly created objects
and reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code fragments don't work correctly if vector doesn't define a default
constructor. The section on SWIG and C++ has more information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example, a global variable like this

Vector unit_i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i get() {
return &unit_i;

}

void unit_i_set(Vector *value) {
unit_i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting language. It would be an extremely bad idea to free or destroy such a
pointer. Also, C++ classes must supply a properly defined copy constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG usesmalloc () ornew to allocate memory for the new value. Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */

void foo_set(char *value) {
if (foo) free(foo);
foo = (char *) malloc(strlen(value)+l);
strcpy(foo, value);

}

/* C++ mode. When -c++ option is used */
void foo_set(char *value) {
if (foo) delete [] foo;
foo = new char[strlen(value)+1l];
strcpy(foo, value);

}

If this is not the behavior that you want, consider making the variable read-only using the $immutable directive. Alternatively, you might write a short assist-function to set the value exactly
like you want. For example:

%inline %{
void set_foo(char *value) {
strncpy(foo, value, 50);
}
%}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not work like a variable). For example, in Python you will have to
write:

>>> set foo("Hello World")

A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection fault. This is due to the fact that SWIG is trying to release the old
value using free or delete when the string literal value currently assigned to the variable wasn't allocated using malloc () or new. To fix this behavior, you can either mark the variable as
read-only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to declare the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However, the default behavior does not release the previous contents
(resulting in a possible memory leak). In fact, you may get a warning message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory

The reason for this behavior is that const char * variables are often used to point to string literals. For example:
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const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call £ree () on such a pointer. On the other hand, it is legal to change the pointer to point to some other value. When setting a variable of this type, SWIG
allocates a new string (using malloc or new) and changes the pointer to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is
not released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object or list in the target language. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points to a suitably allocated region of memory.

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; // Maps to int *
int [10]([20]; // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[ ][ ] is NOT equivalent to a single pointer *a or a double pointer such as **a. Instead, a pointer to an array is used

(as shown above) where the actual value of the pointer is the starting memory location of the array. The reader is strongly advised to dust off their C book and re-read the section on arrays
before using them with SWIG.

Array variables are supported, but are read-only by default. For example:

int  a[100][200];

In this case, reading the variable 'a’ returns a pointer of type int (*)[200] that points to the first element of the arraysa[0][0]. Trying to modify 'a’ results in an error. This is because
SWIG does not know how to copy data from the target language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %{

void a_set(int i, int j, int val) {
afilrj] = val;

}

int a_get(int i, int j) {
return a[il[]];

}

%}

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For example:

// Some array helpers
%inline %{
/* Create any sort of [size] array */
int *int_array(int size) {
return (int *) malloc(size*sizeof(int));
}
/* Create a two-dimension array [size][10] */
int (*int_array_10(int size))[10] {
return (int (*)[10]) malloc(size*10*sizeof(int));
}
%}

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. For example, if you have a declaration like this,

char pathname[256];

SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname get() {
return pathname;

void pathname set(char *value) {
strncpy(pathname, value, 256);

}

In the target language, the value can be set like a normal variable.
5.4.6 Creating read-only variables

A read-only variable can be created by using the $immutable directive as shown :

// File : interface.i

int a; // Can read/write
%immutable;
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int b, ¢, d; // Read only variables
gmutable;
double x, y; // read/write

The $immutable directive enables read-only mode until it is explicitly disabled using the $mutable directive. As an alternative to turning read-only mode off and on like this, individual
declarations can also be tagged as immutable. For example:

%immutable x; // Make x read-only
double x; // Read-only (from earlier %immutable directive)
double y; // Read-write

The $mutable and $immutable directives are actually %feature directives defined like this:

#define %immutable %feature("immutable")
#define %mutable ¢feature("immutable", "")

If you wanted to make all wrapped variables read-only, barring one or two, it might be easier to take this approach:

%immutable; // Make all variables read-only
%feature("immutable", "0") x; // except, make x read/write
double x;

double y;

double z;

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

Compatibility note: Read-only access used to be controlled by a pair of directives $readonly and $readwrite. Although these directives still work, they generate a warning message.
Simply change the directives to $immutable; and $mutable; to silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations
5.4.7.1 Simple renaming of specific identifiers

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may generate a conflict with a keyword or already existing function in
the scripting language. To resolve a name conflict, you can use the $rename directive as shown :

// interface.i

$rename(my_print) print;
extern void print(const char *);

$rename(foo) a really long_and_annoying_name;
extern int a really long_and_annoying_name;

SWIG still calls the correct C function, but in this case the function print () will really be called 'my_print ()" in the target language.

The placement of the $rename directive is arbitrary as long as it appears before the declarations to be renamed. A common technique is to write code for wrapping a header file like this:

// interface.i

$rename(my_print) print;
$rename(foo) a really long_and_annoying_name;

%include "header.h"

%$rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class and structure names, member functions, and member data. For
example, if you had two-dozen C++ classes, all with a member function named “print’ (which is a keyword in Python), you could rename them all to “output' by specifying :

%rename (output) print; // Rename all “print' functions to “output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language. However, if you are careful about namespaces and your use of
modules, you can usually avoid these problems.

When wrapping C code, simple use of identifiers/symbols with $rename usually suffices. When wrapping C++ code, simple use of simple identifiers/symbols with $rename might be too
limiting when using C++ features such as function overloading, default arguments, namespaces, template specialization etc. If you are using the $rename directive and C++, make sure you
read the SWIG and C++ chapter and in particular the section onRenaming and ambiguity resolution for method overloading and default arguments.

Closely related to $rename is the $ignore directive. $ignore instructs SWIG to ignore declarations that match a given identifier. For example:

%ignore print; // Ignore all declarations named print
%ignore MYMACRO; // Ignore a macro

#define MYMACRO 123

void print(const char *);

Any function, variable etc which matches $ignore will not be wrapped and therefore will not be available from the target language. A common usage of $ignore is to selectively remove
certain declarations from a header file without having to add conditional compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to
remove a whole section of problematic code, the SWIG preprocessor should be used instead.
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Compatibility note: Older versions of SWIG provided a special $name directive for renaming declarations. For example:

%name (output) extern void print(const char *);

This directive is still supported, but it is deprecated and should probably be avoided. The $rename directive is more powerful and better supports wrapping of raw header file information.
5.4.7.2 Advanced renaming support
While writing $rename for specific declarations is simple enough, sometimes the same renaming rule needs to be applied to many, maybe all, identifiers in the SWIG input. For example, it

may be necessary to apply some transformation to all the names in the target language to better follow its naming conventions, like adding a specific prefix to all wrapped functions. Doing it
individually for each function is impractical so SWIG supports applying a renaming rule to all declarations if the name of the identifier to be renamed is not specified:

$rename("myprefix %s") ""; // print -> myprefix print

This also shows that the argument of 3rename doesn't have to be a literal string but can be a printf ()-like format string. In the simplest form, "$s" is replaced with the name of the original
declaration, as shown above. However this is not always enough and SWIG provides extensions to the usual format string syntax to allow applying a (SWIG-defined) function to the argument.
For example, to wrap all C functions do_something_long() as more Java-like doSomethingLong() you can use the "lowercamelcase" extended format specifier like this:

$rename("%(lowercamelcase)s") ""; // foo_bar -> fooBar; FooBar -> fooBar

Some functions can be parametrized, for example the "strip" one strips the provided prefix from its argument. The prefix is specified as part of the format string, following a colon after the
function name:

g$rename("$(strip:[wx])s") ""; // wxHello -> Hello; FooBar -> FooBar

Below is the table summarizing all currently defined functions with an example of applying each one. Note that some of them have two names, a shorter one and a more descriptive one, but
the two functions are otherwise equivalent:

Function Returns Example (in/out)
uppercase Of upper Upper case version of the string. Print PRINT
lowercase Of lower Lower case version of the string. Print print
title String with first letter capitalized and the rest in lower case. print Print
firstuppercase String with the first letter capitalized and the rest unchanged. printIt PrintIt
firstlowercase String with the first letter in lower case and the rest unchanged. PrintIt printIt
camelcase of ctitle S;rslr;g with capitalized first letter and any letter following an underscore (which are removed in the process) and rest in lower print_it PrintIt
lowercamelcase Or String with every letter following an underscore (which is removed in the process) capitalized and rest, including the first letter, . . .

. ) print it printIt
lctitle in lower case. —
undercase or utitle Lowe_r case s_tnng wnh gnderscores inserted before every upper case letter in the original string and any number not at the end PrintIt print it
of string. Logically, this is the reverse of camelcase. —
schemify String with all underscores replaced with dashes, resulting in more Lispers/Schemers-pleasing name. print_it print-it
strip:[prefix] Smng without the given preﬁx_or the original string if it doesn't start with this prefix. Note that square brackets should be used wxPrint Print
literally, e.g. $rename ("strip:[wx]")
rstrip:[suffix] Smng without the given suffix qr the original string if it doesn't end with this suffix. Note that square brackets should be used PrintCls Print
literally, e.g. $rename ("rstrip:[Cls]")
String after (Perl-like) regex substitution operation. This function allows to apply arbitrary regular expressions to the identifier
names. The pattern part is a regular expression in Perl syntax (as supported by the Perl Compatible Regular Expressions
(PCRE)) library and the subst string can contain back-references of the form \N where N is a digit from 0 to 9, or one of the
following escape sequences: \1, \L, \u, \U or \E. The back-references are replaced with the contents of the corresponding
regex: /pattern/subst/ capture group while the escape sequences perform the case conversion in the substitution string: \1 and \L convert to the refix print || Print
gex:/p lower case, while \u and \U convert to the upper case. The difference between the elements of each pair is that \1 and \u P P
change the case of the next character only, while \L and \U do it for all the remaining characters or until\E is encountered.
Finally please notice that backslashes need to be escaped in C strings, so in practice "\\" must be used in all these escape
sequences. For example, to remove any alphabetic prefix before an underscore and capitalize the remaining part you could
use the following directive: $rename ("regex:/(\\w+)_(.*)/\\u\\2/")
Output of an external command cmd with the string passed to it as input. Notice that this function is extremely slow compared
to all the other ones as it involves spawning a separate process and using it for many declarations is not recommended. The .
command : cmd . X . X . Ny Print Prnt
cmd is not enclosed in square brackets but must be terminated with a triple '<' sign, e.g. $rename ("command:tr -
d aeiou <<<") (nonsensical example removing all vowels)

The most general function of all of the above ones (not counting command which is even more powerful in principle but which should generally be avoided because of performance

considerations) is the regex one. Here are some more examples of its use:

// Strip the wx prefix from all identifiers except those starting with wxEVT
%rename ("% (regex:/wx(?!EVT) (.*)/\\1/)s") "";

// wxSomeWidget -> SomeWidget
// WXEVT_PAINT -> wxEVT_PAINT

// RApply a rule for renaming the enum elements to avoid the common prefixes
// which are redundant in C#/Java
$rename("%(regex:/"([A-Z][a-z]+)+_(.*)/\\2/)s", %$isenumitem) ""; // Colour Red -> Red

// Remove all "Set/Get" prefixes.
$rename ("% (regex:/"(Set|Get) (.*)/\\2/)s") ""; // SetValue -> Value

// Getvalue -> Value

As before, everything that was said above about $rename also applies to $ignore. In fact, the latter is just a special case of the former and ignoring an identifier is the same as renaming it to
the special "$ignore" value. So the following snippets

%ignore print;
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and

%rename("$ignore") print;

are exactly equivalent and $rename can be used to selectively ignore multiple declarations using the previously described matching possibilities.
5.4.7.3 Limiting global renaming rules
As explained in the previous sections, it is possible to either rename individual declarations or apply a rename rule to all of them at once. In practice, the latter is however rarely appropriate as

there are always some exceptions to the general rules. To deal with them, the scope of an unnamed %rename can be limited using subsequentmatch parameters. They can be applied to any
of the attributes associated by SWIG with the declarations appearing in its input. For example:

%rename("foo", match$name="bar") "";

can be used to achieve the same effect as the simpler

%rename("foo") bar;

and so is not very interesting on its own. However match can also be applied to the declaration type, for example match="class" restricts the match to class declarations only (in C++) and
match="enumitem" restricts it to the enum elements. SWIG also provides convenience macros for such match expressions, for example

%rename("%(title)s", %$isenumitem) "";

will capitalize the names of all the enum elements but not change the case of the other declarations. Similarly, $$isclass, $$isfunction, $$isconstructor, $$isunion,
$$istemplate, and $$isvariable can be used. Many other checks are possible and this documentation is not exhaustive, see the "%rename predicates" section in swig. swg for the full
list of supported match expressions.

In addition to literally matching some string with match you can also use regexmatch or notregexmatch to match a string against a regular expression. For example, to ignore all functions
having "Old" as a suffix you could use

%rename("$ignore", regexmatch$name="0lds") "";

For simple cases like this, specifying the regular expression for the declaration name directly can be preferable and can also be done using regextarget:

%rename("$ignore", regextarget=1) "0ld$";

Notice that the check is done only against the name of the declaration itself, if you need to match the full name of a C++ declaration you must use fullname attribute:

%rename("$ignore", regextarget=1, fullname=1) "NameSpace::ClassName::.*0lds$";

As for notregexmatch, it restricts the match only to the strings not matching the specified regular expression. So to rename all declarations to lower case except those consisting of capital
letters only:

%rename("$(lower)s", notregexmatch$name=""[A-Z]+$") "";

Finally, variants of $rename and $ignore directives can be used to help wrap C++ overloaded functions and methods or C++ methods which use default arguments. This is described in the
Renaming and ambiguity resolution section in the C++ chapter.

5.4.7.4 Ignoring everything then wrapping a few selected symbols

Using the techniques described above it is possible to ignore everything in a header and then selectively wrap a few chosen methods or classes. For example, consider a header, myheader.h
which has many classes in it and just the one class called Star is wanted within this header, the following approach could be taken:

%ignore ""; // Ignore everything

// Unignore chosen class 'Star'
$rename("%s") Star;

// As the ignore everything will include the constructor, destructor, methods etc
// in the class, these have to be explicitly unignored too:

%rename("%s") Star::Star;

%rename("%s") Star::~Star;

%rename("%s") Star::shine; // named method

%include "myheader.h"

Another approach which might be more suitable as it does not require naming all the methods in the chosen class is to begin by ignoring just the classes. This does not add an explicit ignore to
any members of the class, so when the chosen class is unignored, all of its methods will be wrapped.

%rename($ignore, %$isclass) ""; // Only ignore all classes
%rename("%s") Star; // Unignore 'Star'
%include "myheader.h"

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this function could be used in Tcl as follows :
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3 plot -3.4

7o # Use default value
% plot -3.4 7.

5
5 10 # set color to 10 instead

Although the ISO C standard does not allow default arguments, default arguments specified in a SWIG interface work with both C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When default arguments are used in C code, the default values are
emitted into the wrappers and the function is invoked with a full set of arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted
argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions--possibly to serve as callbacks. SWIG provides full support for function pointers when the callback
functions are defined in C and not in the target language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int, int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For instance, in Python:

>>> def add(x, y):
e return x+y
>>> binary op(3, 4, add)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: Type error. Expected p f int int_ int
>>>

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However, existing C functions can be used as arguments provided you install
them as constants. One way to do this is to use the $constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int, int));

/* Some callback functions */
%constant int add(int, int);
%constant int sub(int, int);
%constant int mul(int, int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them as follows:

>>> binary op(3, 4, add)
7

>>> binary op(3, 4, mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accessible as functions. For example:

>>> add(3, 4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc p f int_int int'
>>>

If you want to make a function available as both a callback function and a function, you can use the $callback and $nocallback directives like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int, int));

/* Some callback functions */
%callback("%s_cb");

int add(int, int);

int sub(int, int);

int mul(int, int);
%nocallback;

The argument to $callback is a printf-style format string that specifies the naming convention for the callback constants (%s gets replaced by the function name). The callback mode remains
in effect until it is explicitly disabled using $nocallback. When you do this, the interface now works as follows:

>>> binary op(3, 4, add_cb)

>>> binary op(3, 4, mul _cb)
12
>>> add(3, 4)

>>> mul(3, 4)
12

Notice that when the function is used as a callback, special names such as add_cb are used instead. To call the function normally, just use the original function name such as add ().

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the following variation installs the callbacks as all upper case constants
such as ADD, SUB, and MUL:

/* Some callback functions */
%callback ("% (uppercase)s");
int add(int, int);
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int sub(int, int);
int mul(int, int);
%nocallback;

A format string of "% (lowercase)s" converts all characters to lower case. A string of "% (title)s™" capitalizes the first character and converts the rest to lower case.
And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in the target language, this can be accomplished with the use of

typemaps and other advanced SWIG features. See the Typemaps chapter for more about typemaps and individual target language chapters for more on callbacks. The ‘director feature can be
used to make callbacks from C/C++ into the target language, see Callbacks to the target language.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ISO C structures and union declarations. Extensions to handle C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need structure definitions to build an interface, providing definitions
makes it possible to access structure members. The accessor functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x, y, z;

}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
return obj->x;

}

double Vector_y get(struct Vector *obj) {
return obj->y;

}

double Vector_z_get(struct Vector *obj) {
return obj->z;

void Vector_x_set(struct Vector *obj, double value) {
obj->x = value;

void Vector_y_set(struct Vector *obj, double value) {
obj->y = value;

}

void Vector_z_set(struct Vector *obj, double value) {
obj->z = value;

}

In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
return (Vector *) calloc(l, sizeof(struct Vector));

void delete_Vector(struct Vector *obj) {
free(obj);
}

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like this:

v = new_Vector()

Vector_x_set(v, 2)
Vector_y_set(v, 10)
Vector_z_set(v, -5)

delete Vector(v)

However, most of SWIG's language modules also provide a high-level interface that is more convenient. Keep reading.
5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x, y, z;
} Vector;

When encountered, SWIG assumes that the name of the object is “Vector' and creates accessor functions like before. The only difference is that the use of typedef allows SWIG to drop the
struct keyword on its generated code. For example:

double Vector_x get(Vector *obj) {
return obj->x;

}

If two different names are used like this :

typedef struct vector_struct {
double x, y, 2z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined later in the interface use the type struct vector_struct,
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SWIG knows that this is the same as Vector and it generates the appropriate type-checking code.
5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamically allocated using malloc () and that they are NULL-
terminated ASCII strings. When such a member is modified, the previous contents will be released, and the new contents allocated. For example :

gmodule mymodule
struct Foo {
char *name;

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo->name;

}

char *Foo_name_set(Foo *obj, char *c) {
if (obj->name)
free(obj->name);
obj->name = (char *) malloc(strlen(c)+1);
strcpy(obj->name, c);
return obj->name;

}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See the typemaps chapter for further details.
Note: If the —c++ option is used, new and delete are used to perform memory allocation.
5.5.3 Array members

Arrays may appear as the members of structures, but they will be read-only. SWIG will write an accessor function that returns the pointer to the first element of the array, but will not write a
function to change the contents of the array itself. When this situation is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning message is harmless.
5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {

int y;

Foo f; /* struct member */
} Bar;

When a structure member is wrapped, it is handled as a pointer, unless the $naturalvar directive is used where it is handled more like a C++ reference (see C++ Member data). The
accessors to the member variable as a pointer are effectively wrapped as follows:

Foo *Bar_f_get(Bar *b) {
return &b->f;

}

void Bar_f_set(Bar *b, Foo *value) {
b->f = *value;

}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data member. For example, suppose you wanted to modify the value o
f.x of aBar object like this:

Bar *b;
b->f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following code:

Bar *b;
Foo_x_set(Bar_f_get(b), 37);

In this code, if the Bar_£f_get () function were to return aFoo instead of aFoo *, then the resulting modification would be applied to a copy of £ and not the data member £ itself. Clearly
that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. For instance, if you had a structure like this,

struct Foo {
WORD w;
}i

and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:
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WORD Foo_w_get(Foo *f) {
return f->w;

}

void Foo_w_set(FOO *f, WORD value) {
f->w = value;

}

Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non-primitive member datatypes to pointers. Starting in SWIG-1.3.12, this transformation only occurs if a datatype is
known to be a structure, class, or union. This is unlikely to break existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors
When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do anything, SWIG will automatically generate functions for creating and
destroying objects using malloc () and free( ). Note: the use ofmalloc () only applies when SWIG is used on C code (i.e., when the-c++ option is not supplied on the command line).

C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the $nodefaultctor directive or the -nodefaultctor command line option. For example:

swig -nodefaultctor example.i

or

gmodule foo

%nodefaultctor; // Don't create default constructors
... declarations ...
%clearnodefaultctor; // Re-enable default constructors

If you need more precise control, $nodefaultctor can selectively target individual structure definitions. For example:

%nodefaultctor Foo; // No default constructor for Foo
struct Foo { // No default constructor generated.
}i

struct Bar { // Default constructor generated.

}i

Since ignoring the implicit or default destructors most of the time produces memory leaks, SWIG will always try to generate them. If needed, however, you can selectively disable the
generation of the default/implicit destructor by using $nodefaultdtor

gnodefaultdtor Foo; // No default/implicit destructor for Foo

struct Foo { // No default destructor is generated.
}i
struct Bar { // Default destructor generated.

yi

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned them on using -make_default. However, it appears that
most users want to have constructor and destructor functions so it has now been enabled as the default behavior.

Note: There are also the -nodefault option and $nodefault directive, which disable both the default or implicit destructor generation. This could lead to memory leaks across the target
languages, and it is highly recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint, object oriented programming really just boils down to the process
of attaching functions to structures. These functions normally operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no
direct mechanism for utilizing it with C code. However, SWIG provides a special $extend directive that makes it possible to attach methods to C structures for purposes of building an object
oriented interface. Suppose you have a C header file with the following declaration :

/* file : vector.h */

typedef struct Vector {
double x, y, z;

} Vector;

You can make a Vector look a lot like a class by writing a SWIG interface like this:

// file : vector.i
$module mymodule

%{

#include "vector.h"

%}

%include "vector.h" // Just grab original C header file
%extend Vector { // Attach these functions to struct Vector

Vector (double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V=->X = X;
v->y =Y
v->z = z;
return v;
}
~Vector() {
free($self);
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}
double magnitude() {
return sqgrt($self->x*$self->x+$self->y*$self->y+$self->z*$self->z);
}
void print() {
printf("Vector [%g, %g, %g]\n", $self->x, $self->y, $self->z);
}
}i

Note the usage of the $self special variable. Its usage is identical to a C++ 'this' pointer and should be used whenever access to the struct instance is required. Also note that C++
constructor and destructor syntax has been used to simulate a constructor and destructor, even for C code. There is one subtle difference to a normal C++ constructor implementation though
and that is although the constructor declaration is as per a normal C++ constructor, the newly constructed object must be returned as if the constructor declaration had a return value, a
Vector * in this case.

Now, when used with proxy classes in Python, you can do things like this :

>>> vy = Vector(3, 4, 0) # Create a new vector
>>> print v.magnitude() # Print magnitude

5.0

>>> v.print() # Print it out

[ 3,4, 0]

>>> del v # Destroy it

The $extend directive can also be used inside the definition of the Vector structure. For example:

// file : vector.i
%module mymodule

3{

#include "vector.h"

%}

typedef struct Vector {
double x, y, z;
%extend {
Vector(double x, double y, double z) { ... }
~Vector() { ... }
}

} Vector;

Note that $extend can be used to access externally written functions provided they follow the naming convention used in this example :

/* File : vector.c */
/* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V->X = X;
v->y = y;
v->z = z;
return v;
}
void delete_Vector(Vector *v) {
free(v);

}

double Vector_magnitude(Vector *v) {
return sqrt(v->x*v->x+v->y*v->y+v->z*v->z);

}

// File : vector.i
// Interface file
%module mymodule

3{

#include "vector.h"

%}

typedef struct Vector {
double x, y, z;

%extend {
Vector(int, int, int); // This calls new_Vector()
~Vector(); // This calls delete_Vector()

double magnitude(); // This will call Vector_magnitude()

}

} Vector;

The name used for %extend should be the name of the struct and not the name of any typedef to the struct. For example:

typedef struct Integer {
int value;

} Int;
%extend Integer { ... } /* Correct name */
%extend Int { ... } /* Incorrect name */

struct Float {
float value;
}i
typedef struct Float FloatValue;
%extend Float { ... } /* Correct name */
%extend FloatValue { ... } /* Incorrect name */
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There is one exception to this rule and that is when the struct is anonymously named such as:

typedef struct {
double value;
} Double;
%extend Double { ... } /* Okay */

A little known feature of the $extend directive is that it can also be used to add synthesized attributes or to modify the behavior of existing data attributes. For example, suppose you wanted
to make magnitude a read-only attribute of Vector instead of a method. To do this, you might write some code like this:

// Add a new attribute to Vector
%extend Vector {

const double magnitude;
}
// Now supply the implementation of the Vector_magnitude_get function
%{
const double Vector_magnitude_get(Vector *v) {

return (const double) sqrt(v->x*v->x+v->y*v->yt+tv->z*v->z);
}
%}

Now, for all practical purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with data members that you want to process. For example, consider this interface:

typedef struct Person {
char name[50];

} Person;

Say you wanted to ensure name was always upper case, you can rewrite the interface as follows to ensure this occurs whenever a name is read or written to:

typedef struct Person {
%extend {
char name[50];

}

} Person;

3{
#include <string.h>
#include <ctype.h>

void make upper(char *name) {
char *c;
for (c = name; *c; ++c)
*c = (char)toupper((int)*c);

}
/* Specific implementation of set/get functions forcing capitalization */

char *Person_name_get(Person *p) {
make_upper (p->name) ;
return p->name;

}

void Person_name_set(Person *p, char *val) {
strncpy(p->name, val, 50);
make_upper (p->name) ;
}
%}

Finally, it should be stressed that even though $extend can be used to add new data members, these new members can not require the allocation of additional storage in the object (e.g.,
their values must be entirely synthesized from existing attributes of the structure or obtained elsewhere).

Compatibility note: The $extend directive is a new name for the $addmethods directive. Since $addmethods could be used to extend a structure with more than just methods, a more
suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;
} intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the following:

typedef union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;
Object_intRep;

-
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typedef struct Object {
int objType;
Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both structures. In this case, functions like this would be created :

Object_intRep *Object_ intRep_get(Object *o) {
return (Object_intRep *) &o->intRep;

}

int Object_intRep_ivalue_get(Object_intRep *o) {
return o->ivalue;

}

int Object_intRep_ivalue_set(Object_intRep *o, int value) {
return (o->ivalue = value);

}

double Object_intRep_dvalue get(Object_intRep *o) {
return o->dvalue;

}

«.. €tCc ...

Although this process is a little hairy, it works like you would expect in the target scripting language--especially when proxy classes are used. For instance, in Perl:

# Perl5 script for accessing nested member
$o = CreateObject(); # Create an object somehow
$o->{intRep}->{ivalue} = 7 # Change value of o.intRep.ivalue

If you have a lot of nested structure declarations, it is advisable to double-check them after running SWIG. Although, there is a good chance that they will work, you may have to modify the
interface file in certain cases.

Finally, note that nesting is handled differently in C++ mode, see Nested classes.

5.5.8 Other things to note about structure wrapping
SWIG doesn't care if the declaration of a structure in a . i file exactly matches that used in the underlying C code (except in the case of nested structures). For this reason, there are no
problems omitting problematic members or simply omitting the structure definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure

definition.

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though structure access has been described in terms of high-level accessor
functions such as this,

double Vector_x get(Vector *v) {
return v->x;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get () actually exists in the generated wrapper file. For example, when
creating a Tcl module, the following function is generated instead:

static int
_wrap_Vector_x get(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
struct Vector *argl ;
double result ;

if (SWIG_GetArgs(interp, objc, objv, "p:Vector_x_get self ", &arg0,
SWIGTYPE_p_ Vector) == TCL_ERROR)
return TCL_ERROR;
result = (double ) (argl->x);
Tcl_SetObjResult(interp, Tcl NewDoubleObj((double) result));
return TCL_OK;

The only exception to this rule are methods defined with $extend . In this case, the added code is contained in a separate function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may never use the low-level interface described here, most of SWIG's
language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may want to include additional C code to perform initialization or other
operations. There are four common ways to insert code, but it's useful to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output C/C++ file, it is broken up into five sections corresponding to runtime code, headers, wrapper functions, and module initialization code (in that order).

Begin section.

A placeholder for users to put code at the beginning of the C/C++ wrapper file. This is most often used to define preprocessor macros that are used in later sections.
Runtime code.

This code is internal to SWIG and is used to include type-checking and other support functions that are used by the rest of the module.

Header section.

This is user-defined support code that has been included by the ${ ... %} directive. Usually this consists of header files and other helper functions.

Wrapper code.

These are the wrappers generated automatically by SWIG.

Module initialization.

The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

The %insert directive enables inserting blocks of code into a given section of the generated code. It can be used in one of two ways:
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%insert("section") "filename"
%insert("section") %{ ... %}

The first will dump the contents of the file in the given filename into the named section. The second inserts the code between the braces into the named section. For example, the
following adds code into the runtime section:

%insert("runtime") %{
... code in runtime section ...

%}

There are the 5 sections, however, some target languages add in additional sections and some of these result in code being generated into a target language file instead of the C/C++ wrapper
file. These are documented when available in the target language chapters. Macros named after the code sections are available as additional directives and these macro directives are
normally used instead of $insert . For example, $runtime is used instead of $insert ("runtime" ). The valid sections and order of the sections in the generated C/C++ wrapper file is as

shown:
%begin %{
... code in begin section ...
%}

gruntime %{
... code in runtime section ...
%}

%header %{
... code in header section ...
%}

wrapper %{
... code in wrapper section ...

%}
%init %{
... code in init section ...
%}
The bare ${ ... %} directive is a shortcut that is the same as $header %{ ... %}.

The $begin section is effectively empty as it just contains the SWIG banner by default. This section is provided as a way for users to insert code at the top of the wrapper file before any other
code is generated. Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files have at least one such block to include header
files and support C code. Additional code blocks may be placed anywhere in a SWIG file as needed.

%module mymodule

3{

#include "my_header.h"

%}

... Declare functions here
3{

void some extra function() {

}
%}

A common use for code blocks is to write "helper" functions. These are functions that are used specifically for the purpose of building an interface, but which are generally not visible to the
normal C program. For example :

3{
/* Create a new vector */
static Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));

}

3}
// Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follows :

%inline %{
/* Create a new vector */
Vector *new_Vector() {

return (Vector *) malloc(sizeof(Vector));
}
3}

This is the same as writing:

%{
/* Create a new vector */
Vector *new_Vector() ({

return (Vector *) malloc(sizeof(Vector));
}
%}

/* Create a new vector */
Vector *new_Vector() ({
return (Vector *) malloc(sizeof(Vector));

}
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In other words, the $inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then parsed by both the SWIG preprocessor and
parser. Thus, the above example creates a new command new_Vector using only one declaration. Since the code inside an $inline ${ ... %} block is given to both the C compiler and
SWIG, itis illegal to include any SWIG directives inside a ${ ... %} block.

Note: The usual SWIG C preprocessor rules apply to code insapply blocks when SWIG parses this code. For example, as mentioned earlier, SWIG's C Preprocessor does not follow
#include directives by default.

5.6.4 Initialization blocks

When code is included in the $init section, it is copied directly into the module initialization function. For example, if you needed to perform some extra initialization on module loading, you
could write this:

%init %¢{
init_variables();

%}

Please note that some language backends (e.g. C# or Java) don't have any initialization function, hence you should define a global object performing the necessary initialization for them
instead:

%init %{
static struct MyInit { MyInit() { init_variables(); } } myInit;
%}

5.7 An Interface Building Strategy
This section describes the general approach for building interfaces with SWIG. The specifics related to a particular scripting language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the results might not be what you expect---in fact, they might be awful.
Here's a series of steps you can follow to make an interface for a C program :

Identify the functions that you want to wrap. It's probably not necessary to access every single function of a C program--thus, a little forethought can dramatically simplify the resulting
scripting language interface. C header files are a particularly good source for finding things to wrap.

Create a new interface file to describe the scripting language interface to your program.

Copy the appropriate declarations into the interface file or use SWIG's $include directive to process an entire C source/header file.

Make sure everything in the interface file uses ISO C/C++ syntax.

Make sure all necessary ‘typedef' declarations and type-information is available in the interface file. In particular, ensure that the type information is specified in the correct order as
required by a C/C++ compiler. Most importantly, define a type before it is used! A C compiler will tell you if the full type information is not available if it is needed, whereas SWIG will
usually not warn or error out as it is designed to work without full type information. However, if type information is not specified correctly, the wrappers can be sub-optimal and even result
in uncompilable C/C++ code.

o |f your program has a main() function, you may need to rename it (read on).

e Run SWIG and compile.

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is to simply copy the offending code into a separate interface file
and edit it. However, the SWIG developers have worked very hard to improve the SWIG parser--you should report parsing errors to the swig-devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate a separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
gmodule mymodule

%4

#include "header.h"

%}

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could use a simpler approach and use an interface file like this:

/* File : interface.i */
%module mymodule

3{

#include "header.h"

%}

%include "header.h"

The main advantage of this approach is minimal maintenance of an interface file for when the header file changes in the future. In more complex projects, an interface file containing numerous
%include and #include statements like this is one of the most common approaches to interface file design due to lower maintenance overhead.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special . i file defining the interface to a package. There are several reasons why you might want to do this:
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It is rarely necessary to access every single function in a large package. Many C functions might have little or no use in a scripted environment. Therefore, why wrap them?
Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructed.

Interface files can provide more structure and organization.

SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work around these problems.

Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to the interface file and immediately see what is available without
having to dig it out of header files.

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure you include certain header files by using a ${ %} block like this:

gmodule graphics

3{

#include <GL/gl.h>
#include <GL/glu.h>
%}

// Put the rest of the declarations here

5.7.5 What to do with main()

If your program defines amain () function, you may need to get rid of it or rename it in order to use a scripting language. Most scripting languages define their own main () procedure that is
called instead. main () also makes no sense when working with dynamic loading. There are a few approaches to solving the main () conflict :

e Getrid ofmain() entirely.
¢ Renamemain () to something else. You can do this by compiling your C program with an option like -Dmain=oldmain.
e Use conditional compilation to only includemain () when not using a scripting language.

Getting rid of main () may cause potential initialization problems of a program. To handle this problem, you may consider writing a special function called program_init () that initializes
your program upon startup. This function could then be called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main () function to parse command line options and to set parameters. However, by using a scripting language, you are probably trying to
create a program that is more interactive. In many cases, the old main () program can be completely replaced by a Perl, Python, or Tcl script.

Note: In some cases, you might be inclined to create a scripting language wrapper for main (). If you do this, the compilation will probably work and your module might even load correctly.
The only trouble is that when you call your main () wrapper, you will find that it actually invokes the main () of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

6 SWIG and C++

Comments on C++ Wrapping
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Supported C++ features
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Proxy classes
o Construction of proxy classes
o Resource management in proxies
o Language specific details
Simple C++ wrapping
o Constructors and destructors
Default constructors, copy constructors and implicit destructors
When constructor wrappers aren't created

Copy constructors
Member functions

Static members
° Member data
Protection
Enums and constants
Friends
References and pointers
Pass and return by value
Inheritance
A brief discussion of multiple inheritance. pointers, and type checking
Default arguments
Overloaded functions and methods
o Dispatch function generation
o Ambiguity in overloadini
o Renaming and ambiguity resolution
o Comments on overloading
Overloaded operators
Class extension
e Templates
o The %template directive
o Function templates
o Default template arguments
o Template base classes
o Template specialization
°
°
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Member templates
Scoping and templates
More on templates
Namespaces
o The nspace feature for namespaces
Renaming templated types in namespaces
Exception specifications
Exception handling with %catches
Pointers to Members
Smart pointers and operator->()
C++ reference counted objects - ref/unref feature
Using declarations and inheritance
Nested classes
A brief rant about const-correctness
Callbacks to the target language
o Introduction to director classes
o Using directors and target language callbacks
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5.7 An Interface Building Strategy



SWIG-4.0 Documentation

This chapter describes SWIG's support for wrapping C++. It is mostly concerned about C++ as defined by the C++ 98 and 03 standards. For additions to the original C++ standard, please read
the SWIG and C++11, SWIG and C++14 and SWIG and C++17 chapters. As a prerequisite, you should first read the chapter SWIG Basics to see how SWIG wraps ISO C. Support for C++
builds upon ISO C wrapping and that material will be useful in understanding this chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only provides support for a subset of C++ features. Fortunately, this is
now a rather large subset.

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic ) way to map many of its advanced features into other languages. As a simple example, consider
the problem of wrapping C++ multiple inheritance to a target language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when no
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the world of SWIG, you are really trying to create binary-level software
components for use in other languages. In order for this to work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its functionality. Although templates are a powerful feature, they are
largely orthogonal to the whole notion of binary components and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper. To
further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly basic operations (e.g., pointer dereferencing, procedure call, etc.)
can be changed in dramatic and sometimes non-obvious ways. Although this "magic" may present few problems in a C++-only universe, it greatly complicates the problem of crossing language
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedural ISO C style wrappers. These wrappers take care of basic type
conversion, type checking, error handling, and other low-level details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built-in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. On top of the low-level procedural (flattened) interface, SWIG generates proxy
classes that provide a natural object-oriented (OO) interface to the underlying code. The proxy classes are typically written in the target language itself. For instance, in Python, a real Python
class is used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG does not encapsulate C++ classes inside a special C++ adaptor, it
does not rely upon templates, nor does it add in additional C++ inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting wrapper code. You might say that SWIG has been written to
follow the principle of least surprise--it does not play sneaky tricks with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Some of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modules. Keep in mind that the target languages also provide the high-
level OO interface via proxy classes. More detailed coverage can be found in the documentation for each target language.

6.3 Supported C++ features

SWIG currently supports most C++ features including the following:

Classes

Constructors and destructors

Virtual functions

Public inheritance (including multiple inheritance)
Static functions

Function and method overloading

Operator overloading for many standard operators
References

Templates (including specialization and member templates)
Pointers to members

Namespaces

Default parameters

Smart pointers

The following C++ features are not currently supported:
¢ Overloaded versions of certain operators (new, delete, etc.)
As a rule of thumb, SWIG should not be used on raw C++ source files, use header files only.

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no promises. Also, submitting a bug report is a very good way to get
problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the “-c++' option. This changes the way a number of critical features such as memory management are handled. It also
enables the recognition of C++ keywords. Without the -c++ flag, SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig -c++ -tcl example.i
$ c++ -fPIC -c example wrap.cxx
$ c++ example_wrap.o $(OBJS) -o example.so

Unfortunately, the process varies slightly on each platform. Make sure you refer to the documentation on each target language for further details. The SWIG Wiki also has further details.

Compatibility Note: Early versions of SWIG generated just a flattened low-level C style API to C++ classes by default. The -noproxy commandline option is recognised by many target languages and
will generate just this interface as in earlier versions.

6.5 Proxy classes

In order to provide a natural mapping from C++ classes to the target language classes, SWIG's target languages mostly wrap C++ classes with special proxy classes. These proxy classes are
typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is wrapped by a Python proxy class. Or if you're building a Java module,
each C++ class is wrapped by a Java proxy class.

6.5.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses low-level accessor functions. To illustrate, suppose you had a C++ class like this:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
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int x;

Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
Foo *self;
public:
FooProxy() {
self = new_Foo();
}
~FooProxy() {
delete_Foo(self);
}
int bar(int x) {
return Foo_bar(self, x);
¥
int x_get() {
return Foo_x get(self);
}
void x_set(int x) {
Foo_x_set(self, x);

}

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy might look roughly like this:

class Foo:
def _ init (self):
self.this = new_Foo()
def _ del (self):
delete_Foo(self.this)
def bar(self, x):
return Foo_bar(self.this, x)
def _ getattr (self, name):
if name == 'x':
return Foo_x get(self.this)
def _ setattr_(self, name, value):
if name == 'x':
Foo_x_set(self.this, value)

Again, it's important to emphasize that the low-level accessor functions are always used by the proxy classes. Whenever possible, proxies try to take advantage of language features that are
similar to C++. This might include operator overloading, exception handling, and other features.

6.5.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;

Yi

class Spam {
public:
Foo *value;

Consider some script code that uses these classes:

f = Foo() # Creates a new Foo

s = Spam() # Creates a new Spam

s.value = f # Stores a reference to f inside s
g = s.value # Returns stored reference

g =4 # Reassign g to some other value
del £ # Destroy f

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by newly created proxy classes. That is, there is both a new proxy
class instance and a new instance of the underlying C++ class. In this example, both £ and s are created in this way. However, the statements . value is rather curious---when executed, a
pointer to £ is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the same object. To make matters even more interesting,
consider the statement g = s.value. When executed, this creates a new proxy classg that provides a wrapper around the C++ object stored in s.value . In general, there is no way to
know where this object came from---it could have been created by the script, but it could also have been generated internally. In this particular example, the assignment of g results in a second
proxy class for £. In other words, a reference to £ is now shared by two proxy classesand a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many languages, this makes the old value of g available for garbage
collection. Therefore, this causes one of the proxy classes to be destroyed. Later on, the statement del £ destroys the other proxy class. Of course, there is still a reference to the original
object stored inside another C++ object. What happens to it? Is the object still valid?

To deal with memory management problems, proxy classes provide an API for controlling ownership. In C++ pseudocode, ownership control might look roughly like this:

class FooProxy {

public:
Foo *self;
int thisown;

FooProxy() {
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self = new_Foo();
thisown = 1; // Newly created object
}
~FooProxy() {
if (thisown) delete Foo(self);
}
// Ownership control API
void disown() {
thisown = 0;
}
void acquire() {
thisown = 1;
}
Yi

class FooPtrProxy: public FooProxy {
public:
FooPtrProxy(Foo *s) {
self = s;
thisown = 0;
}
Yi

class SpamProxy {

FooProxy *value get() {
return FooPtrProxy(Spam value get(self));

}

void value set(FooProxy *v) {
Spam_value_set(self, v->self);
v->disown();

}

}i

Looking at this code, there are a few central features:

Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set.

When new objects are created in the target language, the ownership flag is set.

When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not have ownership.
In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is lost.

Manual ownership control is provided by specialdisown () and acquire () methods.

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible memory management problem. However, proxies do provide a

mechanism for manual control that can be used (if necessary) to address some of the more tricky memory management problems.

6.5.3 Language specific details

Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has merely introduced the topic in a very general way.

6.6 Simple C++ wrapping

The following code shows a SWIG interface file for a simple C++ class.

gmodule list

%4

#include "list.h"
%}

// Very simple C++ example for linked list

class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int 1length;
static void print(List *1);
}i

To generate wrappers for this class, SWIG first reduces the class to a collection of low-level C-style accessor functions which are then used by the proxy classes.

6.6.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
return new List;

void delete_List(List *1) {
delete 1;
}

6.6.2 Default constructors, copy constructors and implicit destructors
Following the C++ rules for implicit constructor and destructors, SWIG will automatically assume there is one even when they are not explicitly declared in the class interface.
In general then:
¢ |f a C++ class does not declare any explicit constructor, SWIG will automatically generate a wrapper for one.

« |f a C++ class does not declare an explicit copy constructor, SWIG will automatically generate a wrapper for one if the $copyctor is used.
e |f a C++ class does not declare an explicit destructor, SWIG will automatically generate a wrapper for one.
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And as in C++, a few rules that alters the previous behavior:

¢ A default constructor is not created if a class already defines a constructor with arguments.

* Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract class, but don't provide definitions for all of the pure methods.
o A default constructor is not created unless all base classes support a default constructor.

« Default constructors and implicit destructors are not created if a class defines them in a private or protected section.

* Default constructors and implicit destructors are not created if any base class defines a non-public default constructor or destructor.

SWIG should never generate a default constructor, copy constructor or default destructor wrapper for a class in which it is illegal to do so. In some cases, however, it could be necessary (if the
complete class declaration is not visible from SWIG, and one of the above rules is violated) or desired (to reduce the size of the final interface) by manually disabling the implicit
constructor/destructor generation.

To manually disable these, the $nodefaultctor and $nodefaultdtor feature flag directives can be used. Note that these directives only affects the implicit generation, and they have no
effect if the default/copy constructors or destructor are explicitly declared in the class interface.

For example:
%nodefaultctor Foo; // Disable the default constructor for class Foo.
class Foo { // No default constructor is generated, unless one is declared
Yi
class Bar { // A default constructor is generated, if possible
Yi

The directive $nodefaultctor can also be applied "globally”, as in:

gnodefaultctor; // Disable creation of default constructors

class Foo { // No default constructor is generated, unless one is declared
Yi
class Bar {
public:

Bar(); // The default constructor is generated, since one is declared
b

%clearnodefaultctor; // Enable the creation of default constructors again

The corresponding $nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if needed. Be aware, however, that this could lead to memory leaks in
the target language. Hence, it is recommended to use this directive only in well known cases. For example:

gnodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { // No destructor is generated, unless one is declared

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7. This may break certain older modules, but the old behavior can
be easily restored using $nodefault or the -nodefault command line option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be able to
gather information from both the private and protected sections (specifically, it needs to know if a private or protected constructor/destructor is defined). In older versions of SWIG, it was
fairly common to simply remove or comment out the private and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously generate
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using $nodefault to fix the problem.

Note: The $nodefault directive/~-nodefault options described above, which disable both the default constructor and the implicit destructors, could lead to memory leaks, and so it is
strongly recommended to not use them.

6.6.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a constructor wrapper if it thinks that it will result in illegal wrapper code.
There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:

Foo(); // Not wrapped.
public:

}i

Next, SWIG won't generate wrappers for a class if it appears to be abstract--that is, it has undefined pure virtual methods. Here are some examples:

class Bar {

public:
Bar(); // Not wrapped. Bar is abstract.
virtual void spam(void) = 0;
}i
class Grok : public Bar {
public:
Grok(); // Not wrapped. No implementation of abstract spam().
}i

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caused when classes are determined to be abstract. To see if this is
the case, run SWIG with all of its warnings turned on:

% swig -Wall -python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

%feature("notabstract") Foo;

class Foo : public Bar {
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public:
Foo(); // Generated no matter what---not abstract.

More information about $feature can be found in the Customization features chapter.
6.6.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is supported, the copy constructor is accessible using the normal
constructor function. For example, if you have this:

class List {
public:
List();
List(const List &); // Copy constructor

then the copy constructor can be used as follows:

»

= List() # Create a list
y = List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_ List(List *f) {
return new List(*f);

}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If more than one copy constructor is defined, only the first definition
that appears is used as the copy constructor--other definitions will result in a name-clash. Constructors such as X (const X &),X(X &),andX(X *) are handled as copy constructors in
SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the treatment of default constructors and destructors. However, copy
constructor wrappers can be generated if using the copyctor feature flag. For example:

%copyctor List;

class List {

public:
List();

Yi

Will generate a copy constructor wrapper for List.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy constructors could be wrapped, but they had to be renamed. For
example:

class Foo {
public:
Foo();
%name (CopyFoo) Foo(const Foo &);

For backwards compatibility, SWIG does not perform any special copy-constructor handling if the constructor has been manually renamed. For instance, in the above example, the name of the
constructor is set to new_CopyFoo (). This is the same as in older versions.

6.6.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj->search(value);

}

This translation is the same even if the member function has been declared as virtual.

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access such as obj->search(value) is directly inlined into the
generated wrapper functions. However, the name and calling convention of the low-level procedural wrappers match the accessor function prototype described above.

6.6.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member function print (List *1) directly invokesList::print(List *1)
in the generated wrapper code.

6.6.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. For example :

int List_length get(List *obj) {
return obj->length;

}

int List_length set(List *obj, int value) {
obj->length = value;
return value;

}
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A read-only member can be created using the $immutable and $mutable feature flag directive. For example, we probably wouldn't want the user to change the length of a list so we could
do the following to make the value available, but read-only.

class List {
public:
%immutable;
int length;
gmutable;

Alternatively, you can specify an immutable member in advance like this:

%immutable List::length;
class List {

int length; // Immutable by above directive

Similarly, all data attributes declared as const are wrapped as read-only members.

By default, SWIG uses the const reference typemaps for members that are primitive types. There are some subtle issues when wrapping data members that are not primitive types, such as
classes. For instance, if you had another class like this,

class Foo {
public:
List items;

then the low-level accessor to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
return &self->items;

}

void Foo_items_set(Foo *self, List *value) {
self->items = *value;

}

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural for some types. For example, a user would expect the STL
std::string class member variables to be wrapped as a string in the target language, rather than a pointer to this class. The const reference typemaps offer this type of marshalling, so there is a
feature to tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the naturalvar feature and can be used to effectively change the way accessors are generated
to the following:

const List &Foo_items_get(Foo *self) {
return self->items;

}

void Foo_items_set(Foo *self, const List &value) {
self->items = value;

The $naturalvar directive is a macro for, and hence equivalent to, $feature("naturalvar"). It can be used as follows:

// All List variables will use const List& typemaps
%naturalvar List;

// Only Foo::myList will use const List& typemaps
%naturalvar Foo::myList;
struct Foo {
List myList;
Yi

// All non-primitive types will use const reference typemaps
%naturalvar;

The observant reader will notice that $naturalvar works like any other feature flag directive but with some extra flexibility. The first of the example usages above shows $naturalvar
attaching to the myList 's variable type, that is the List class. The second usage shows $naturalvar attaching to the variable name. Hence the naturalvar feature can be used on either
the variable's name or type. Note that using the naturalvar feature on a variable's name overrides any naturalvar feature attached to the variable's type.

It is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared to the pointer typemaps. A pointer can be NULL, whereas a reference
cannot, so the extra checking ensures that the target language user does not pass in a value that translates to a NULL pointer and thereby preventing any potential NULL pointer dereferences.
The gnaturalvar feature will apply to global variables in addition to member variables in some language modules, eg C# and Java.

The naturalvar behavior can also be turned on as a global setting via the —-naturalvar commandline option or the module mode option, $module (naturalvar=1). However, any use of
$feature("naturalvar") will override the global setting.

Compatibility note: The $naturalvar feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually apply the const reference typemaps, eg $apply const
std::string & { std::string * }, butthis example would also apply the typemaps to methods taking a std: : string pointer.

Compatibility note: Read-only access used to be controlled by a pair of directives $readonly and $readwrite. Although these directives still work, they generate a warning message.
Simply change the directives to $immutable; and $mutable; to silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers. For example, if you had a structure like this

struct Foo {
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size_t len;

}i

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG-1.3.12, this behavior has been modified. Specifically, pointers will only be
used if SWIG knows that a datatype corresponds to a structure or class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths
over a few problems related to structure wrapping and some of SWIG's customization features.

6.7 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of the using directive. In general, anything specified in a private or
protected section will be ignored, although the internal code generator sometimes looks at the contents of the private and protected sections so that it can properly generate code for default
constructors and destructors. Directors could also modify the way non-public virtual protected members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a “‘public:' declaration (This is the same convention used by C++).
6.8 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the appropriate language chapter. However, many languages map enums
and constants in a class definition into constants with the classname as a prefix. For example :

class Swig {
public:

enum {ALE, LAGER, PORTER, STOUT};
}i

Generates the following set of constants in the target scripting language :

Swig ALE = Swig::ALE

Swig LAGER = Swig::LAGER
Swig PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read-only members and do not create constants.

6.9 Friends

Friend declarations are recognised by SWIG. For example, if you have this code:

class Foo {
public:

friend void blah(Foo *f);

then the £riend declaration does result in a wrapper code equivalent to one generated for the following declaration

class Foo {
public:

void blah(Foo *f);

A friend declaration, as in C++, is understood to be in the same scope where the class is declared, hence, you can have

%ignore bar::blah(Foo *f);
namespace bar {

class Foo {
public:

friend void blah(Foo *f);

and a wrapper for the method 'blah’ will not be generated.
6.10 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:

double bar(double &a);
}

has a low-level accessor

double Foo_bar(Foo *obj, double *a) {
obj->bar(*a);
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As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value instead of pointers. For example, if you have a function like this,

void foo(const int &x);

it is called from a script as follows:

foo(3) # Notice pass by value

Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:

Foo &spam();
}i

Generates an accessor like this:

Foo *Bar_spam(Bar *obj) {
Foo &result = obj->spam();
return &result;

}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value rather than a pointer. For example, a function like this,

const int &bar();

will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.
Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this will probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more advanced C++ wrapping applications---especially related to
templates and the STL. This was first added in SWIG-1.3.12.

6.11 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
Vector r = cross_product(x, y);
return new Vector(r);

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If vector is defined as a class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by encapsulating the arguments inside a special C++ template
wrapper class, through a process called the "Fulton Transform". This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x, y);
return new Vector(r);

This transformation is a little sneaky, but it provides support for pass-by-value even when a class does not provide a default constructor and it makes it possible to properly support a number of
SWIG's customization options. The definition of SwigvalueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper around a pointer.

Although SWIG usually detects the classes to which the Fulton Transform should be applied, in some situations it's necessary to override it. That's done with $feature("valuewrapper")
to ensure it is used and $feature ("novaluewrapper") to ensure it is not used:

%feature("novaluewrapper") A;
class A;

%feature("valuewrapper") B;
struct B {

B()i

70 cooo
}i

It is well worth considering turning this feature on for classes that do have a default constructor. It will remove a redundant constructor call at the point of the variable declaration in the wrapper,
so will generate notably better performance for large objects or for classes with expensive construction. Alternatively consider returning a reference or a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG---it should be transparent except that you may see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only absolutely necessary to do this for classes that don't define a
default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or references.
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6.12 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target language. The SWIG type-checker knows about the relationship
between base and derived classes and allows pointers to any object of a derived class to be used in functions of a base class. The type-checker properly casts pointer values and is safe to use
with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most cases, this means that SWIG will parse the non-public inheritance
declarations, but that will have no effect in the generated code, besides the implicit policies derived for constructors and destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

// shapes.i
%module shapes

3{

#include "shapes.h"
%}

class Shape {
public:
double x, y;
virtual double area() = 0;
virtual double perimeter() = 0;
void set_location(double x, double y);
Yi
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();

}i
class Square : public Shape {
public:

Square(double size);

~Square();
double area();
double perimeter();

}

When wrapped into Python, we can perform the following operations (shown using the low level Python accessors):

$ python

>>> import shapes

>>> circle = shapes.new_Circle(7)

>>> square = shapes.new_Square(10)

>>> print shapes.Circle area(circle)
153.93804004599999757

>>> print shapes.Shape_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(square)
100.00000000000000000

>>> shapes.Shape_set location(square, 2, -3)
>>> print shapes.Shape_perimeter (square)
40.00000000000000000

>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making calls to Circle_area, Square_area, and so on. However, the
same results can be accomplished by simply using the Shape_area function on either object.

One important point concerning inheritance is that the low-level accessor functions are only generated for classes in which they are actually declared. For instance, in the above example, the
method set_location() is only accessible as Shape_set_location() and notas Circle_set_location() or Square_set_location() . Of course, the
Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the attributes x and y are generated as Shape_x_get (),
Shape_x_set(),Shape_y_get(), and Shape_y_set (). Functions such asCircle_x_get () are not available--instead you should use Shape_x_get ().

Note that there is a one to one correlation between the low-level accessor functions and the proxy methods and therefore there is also a one to one correlation between the C++ class methods
and the generated proxy class methods.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get a warning message like this:

example.i:18: Warning 401: Nothing known about base class 'Foo'. Ignored.

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will accept any object derived from Foo regardless of whether or not
SWIG actually wrapped the Foo class. If you really don't want to generate wrappers for the base class, but you want to silence the warning, you might consider using the $import directive to
include the file that defines Foo. $import simply gathers type information, but doesn't generate wrappers. Alternatively, you could just define Foo as an empty class in the SWIG interface or

use warning suppression .

Note: typedef-names can be used as base classes. For example:

class Foo {

typedef Foo FooObj;
class Bar : public FooObj { // Ok. Base class is Foo

Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {

} Foo;

class Bar : public Foo { // Ok.
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Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are actually defined in each class. This differs from SWIG1.1 which
used to inherit all of the declarations defined in base classes and regenerate specialized accessor functions such as Circle_x get(), Square_x_get(),Circle_set_location(), and
Square_set_location( ). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it awkward to build applications spread across multiple modules
(since accessor functions are duplicated in every single module). It is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further
optimizations are enabled when using the -fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are already defined in a base class.

6.13 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value of the pointer and a type string. For example, in Tcl, a C++ pointer
might be encoded as a string like this:

_808fea88_p Circle

A somewhat common question is whether or not the type-tag could be safely removed from the pointer. For instance, to get better performance, could you strip all type tags and just use simple
integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in the target language. Typically this is the equivalent of casting a
pointer to void *. This means that any C++ type information associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features--especially multiple inheritance. For example, suppose you had code like this:

class A {
public:

int x;
}i

class B {
public:

int y;
}i

class C : public A, public B {
}i

int A_function(A *a) {
return a->x;

}

int B_function(B *b) {
return b->y;

}

Now, consider the following code that uses void

*

C *c = new C();

void *p = (void *) c;

int x = A function((A *) p);
int y = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However, one of the functions will always return the wrong result when used
as shown. The reason for this is that even though p points to an object of type ¢, the casting operation doesn't work like you would expect. Internally, this has to do with the data representation
of c. With multiple inheritance, the data from each base class is stacked together. For example:

____________ <--- (C *), (A *)

Because of this stacking, a pointer of type ¢ * may change value when it is convertedto aa * orB *. However, this adjustment does not occur if you are converting from avoid *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG generated wrappers to correctly cast pointer values under
inheritance (avoiding the above problem).

Some of the language modules are able to solve the problem by storing multiple instances of the pointer, for example, & *, in the A proxy class as well as ¢ * in the C proxy class. The
correct cast can then be made by choosing the correct void * pointer to use and is guaranteed to work as the cast to a void pointer and back to the same type does not lose any type
information:

C *c = new C();

void *p = (void *) c;

void *pA = (void *) c;

void *pB = (void *) c;

int x = A_function((A *) pA);
int y = B_function((B *) pB);

In practice, the pointer is held as an integral number in the target language proxy class.

6.14 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:

void bar(int x, int y = 3, int z = 4);
}i

6.13 A brief discussion of multiple inheritance, pointers, and type checking
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SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively handling methods with default arguments as if it was wrapping
the equivalent overloaded methods. Thus for the example above, it is as if we had instead given the following to SWIG:

class Foo {

public:
void bar(int x, int y, int z);
void bar(int x, int y);
void bar(int x);

b

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this are covered in the next section Overloaded functions and methods . This
approach allows SWIG to wrap all possible default arguments, but can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using $feature with functions with default arguments. TheRenaming and ambiguity resolution section also
deals with using $rename and %ignore on methods with default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need to
write a typecheck typemap. See the Typemaps and overloading section for details or otherwise use thecompactdefaultargs feature flag as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently. Instead a single wrapper method was generated and the default values were copied
into the C++ wrappers so that the method being wrapped was then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods
with default arguments can be re-activated by using the compactdefaultargs feature flag.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:

void bar(int x, int y = 3, int z = 4);
}i

This is great for reducing the size of the wrappers, but the caveat is it does not work for the statically typed languages, such as C# and Java, which don't have optional arguments in the
language, Another restriction of this feature is that it cannot handle default arguments that are not public. The following example illustrates this:

class Foo {

private:
static const int spam;
public:
void bar(int x, int y = spam); // Won't work with %feature("compactdefaultargs") -
// private default value
}i

This produces uncompilable wrapper code because default values in C++ are evaluated in the same scope as the member function whereas SWIG evaluates them in the scope of a wrapper
function (meaning that the values have to be public).

The compactdefaultargs feature is automatically turned on when wrapping C code with default arguments. Some target languages will also automatically turn on this feature if the keyword
arguments feature (kwargs) is specified for either C or C++ functions, and the target language supports kwargs, the compactdefaultargs feature is also automatically turned on. Keyword

arguments are a language feature of some scripting languages, for example Ruby and Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach
cannot be used.

6.15 Overloaded functions and methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example, if you supply SWIG with overloaded functions like this:

void foo(int x) {
printf("x is %d\n", x);

}

void foo(char *x) {
printf("x is '%s'\n", x);

}

The function is used in a completely natural way. For example:

>>> foo(3)

x is 3

>>> foo("hello")
x is 'hello’

>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);

it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)

>>> g = Foo(f) # Copy Foo

>>> f.bar("hello", 2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting languages. Unlike C++, which binds overloaded methods at compile
time, SWIG must determine the proper function as a runtime check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. For
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,
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void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the scripting languages, SWIG generates a dispatch function that
checks the number of passed arguments and their types. To create this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.

2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in increased order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);

void foo(int);

void foo(Bar *);

void foo();

void foo(int x, int y, int z, int w);
void foo(int x, int y, int z = 3);
void foo(double x, double y);

void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

[0] foo()

[1] foo(double);

[2] foo(int);

[31] foo(Bar *);

[4] foo(int x, int y, int z = 3);
[5] foo(double x, double y)

[6] foo(double x, Bar *z)

[71 foo(int x, int y, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

[0] foo()

[1] foo(Bar *);

[2] foo(int);

[31] foo(double) ;

[4] foo(int x, int y, int z = 3);
[51] foo(double x, Bar *z)

[6] foo(double x, double y)

[71 foo(int x, int y, int z, int w);

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same order as they appear in this ranking.

If you're still confused, don't worry about it---SWIG is probably doing the right thing.
6.15.2 Ambiguity in overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore, which one of these functions do you pick? Clearly, there is no way
to truly make a distinction just by looking at the value of the integer itself ( int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate a
warning message like this for scripting languages:

example.i:4: Warning 509: Overloaded method foo(long) effectively ignored,
example.i:3: Warning 509: as it is shadowed by foo(int).

or for statically typed languages like Java:

example. i Warning 516: Overloaded method foo(long) ignored,
example.i Warning 516: using foo(int) instead.
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped at all. This is done as SWIG does not know how to
disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:
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Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown above.
Floating point conversion. f1oat and double can not be disambiguated in some languages.

Pointers and references. For example, Foo * and Foo & .

Pointers and arrays. For example, Foo * and Foo [4] .

Pointers and instances. For example, Foo and Foo * . Note: SWIG converts all instances to pointers.

Qualifiers. For example, const Foo * and Foo *.

Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier methods will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get a warning message like this:

example.i:3: Warning 467: Overloaded foo(int) not supported (incomplete type checking rule -
no precedence level in typecheck typemap for 'int').

This error means that the target language module supports overloading, but for some reason there is no type-checking rule that can be used to generate a working dispatch function. The
resulting behavior is then undefined. You should report this as a bug to the SWIG bug tracking database if this is due to one of the typemaps supplied with SWIG.

If you get an error message such as the following,

Overloaded declaration ignored. Spam::foo(double )

Previous declaration is Spam::foo(int )

Overloaded declaration ignored. Spam::foo(Bar *, Spam *, int )
foo.i:5. Previous declaration is Spam::foo(int )

it means that the target language module has not yet implemented support for overloaded functions and methods. The only way to fix the problem is to read the next section.

6.15.3 Renaming and ambiguity resolution

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing with the problem. First, you can tell SWIG to ignore one of the
methods. This is easy---simply use the $ignore directive. For example:

%ignore foo(long);

void foo(int);
void foo(long); // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using $rename. For example:

$rename ("foo_short") foo(short);
$rename(foo_long) foo(long);

void foo(int);
void foo(short); // Accessed as foo_short()
void foo(long); // BAccessed as foo_long()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be essential in order to avoid a parsing error. The $ignore and
%$rename directives are both rather powerful in their ability to match declarations. When used in their simple form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */

$rename(foo_i) foo(int);

%rename(foo_d) foo(double);

void foo(int); // Becomes 'foo_i'

void foo(char *c); // Stays 'foo' (not renamed)

class Spam {

public:
void foo(int); // Becomes 'foo_i'
void foo(double); // Becomes ‘'foo_d'
Yi

If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

srename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
// (will not rename class members)

srename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam: : foo (int), it is applied to that class and all derived classes. This can be used to apply a consistent renaming across an entire
class hierarchy with only a few declarations. For example:

$rename(foo_i) Spam::foo(int);
$rename(foo_d) Spam::foo(double);

class Spam {

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
}i
class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
}i

class Grok : public Bar {
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public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
}i

It is also possible to include $rename specifications in the class definition itself. For example:

class Spam {
$rename(foo_i) foo(int);
%rename(foo_d) foo(double);

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
}i
class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
Yi

In this case, the $rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to explicitly specify the class prefix Spam: :.

A special form of $rename can be used to apply a renaming just to class members (of all classes):

$rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the *: : syntax is non-standard C++, but the *' is meant to be a wildcard that matches any class name (we couldn't think of a better alternative so if you have a better idea, send email to
the swig-devel mailing list.

Although this discussion has primarily focused on $rename all of the same rules also apply to $ignore. For example:

%ignore foo(double); // Ignore all foo(double)

%ignore Spam::foo; // Ignore foo in class Spam

%ignore Spam::foo(double); // Ignore foo(double) in class Spam
%ignore *::foo(double); // Ignore foo(double) in all classes

When applied to a base class, $ignore forces all definitions in derived classes to disappear. For example, $ignore Spam::foo(double) will eliminate foo (double) in Spam and all
classes derived from Spam.

Notes on %rename and %ignore:

¢ Since, the $rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface file. This makes it possible to apply a consistent name resolution
without having to modify header files. For example:

smodule foo
/* Rename these overloaded functions */
$rename(foo_i) foo(int);

$rename(foo_d) foo(double);

%include "header.h"

¢ The scope qualifier (::) can also be used on simple names. For example:

%rename (bar) ::foo; // Rename foo to bar in global scope only
%rename (bar) Spam::foo; // Rename foo to bar in class Spam only
%rename (bar) *::foo; // Rename foo in classes only

¢ Name matching tries to find the most specific match that is defined. A qualified name such as Spam: : foo always has higher precedence than an unqualified name foo. Spam: : foo has
higher precedence than *: : foo and *: : foo has higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the same scope
level. However, an unparameterized name with a scope qualifier has higher precedence than a parameterized name in global scope (e.g., a renaming of Spam: : foo takes precedence
over a renaming of foo(int) ).

The order in which $rename directives are defined does not matter as long as they appear before the declarations to be renamed. Thus, there is no difference between saying:

%rename (bar) foo;
$rename(foo_i) Spam::foo(int);
%rename (Foo) Spam::foo;

and this

%rename (Foo) Spam::foo;
%rename (bar) foo;
$rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated $rename directive will change the setting for a previous $rename directive if exactly
the same name, scope, and parameters are supplied.

¢ For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a depth-first traversal of the class hierarchy is used.

* The name matching rules strictly follow member qualifier rules. For example, if you have a class and member with a member that is const qualified like this:

class Spam {
public:
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void bar() const;

}i

the declaration

$rename(name) Spam::bar();

will not apply as there is no unqualified member bar (). The following will apply the rename as the qualifier matches correctly:

%rename (name) Spam::bar() const;

Similarly for combinations of cv-qualifiers and ref-qualifiers, all the qualifiers must be specified to match correctly:

%rename(name) Jam::bar(); // will not match
%rename(name) Jam::bar() &; // will not match
$rename (name) Jam::bar() const; // will not match

%rename (name) Jam::bar() const &; // ok, will match

class Jam {
public:

void bar() const &;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their qualifiers, like this:

class Spam {

public:
void bar(); // Unqualified member
void bar() const; // Qualified member

%rename can then be used to target each of the overloaded methods individually. For example we can give them separate names in the target language:

%rename(namel) Spam::bar();
%rename (name2) Spam::bar() const;

Similarly, if you merely wanted to ignore one of the declarations, use $ignore with the full qualifier. For example, the following directive would tell SWIG to ignore the const version of
bar () above:

%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone

¢ Currently no resolution is performed in order to match function parameters. This means function parameter types must match exactly. For example, namespace qualifiers and typedefs
will not work. The following usage of typedefs demonstrates this:

typedef int Integer;
$rename(foo_i) foo(int);

class Spam {
public:
void foo(Integer); // Stays 'foo' (not renamed)
}i
class Ham {
public:
void foo(int); // Renamed to foo_i
}i

¢ The name matching rules also use default arguments for finer control when wrapping methods that have default arguments. Recall that methods with default arguments are wrapped as if
the equivalent overloaded methods had been parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:

void bar(int i=-1, double d=0.0);

The following $rename will match exactly and apply to all the target language overloaded methods because the declaration with the default arguments exactly matches the wrapped
method:

%rename (newbar) Spam::bar(int i=-1, double d=0.0);

The C++ method can then be called from the target language with the new name no matter how many arguments are specified, for example: newbar (2, 2.0), newbar(2) or
newbar (). However, if the $rename does not contain the default arguments:

%rename (newbar) Spam::bar(int i, double d);

then only one of the three equivalent overloaded methods will be renamed and wrapped as if SWIG parsed:
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void Spam::newbar(int i, double d);
void Spam::bar(int i);
void Spam::bar();

The C++ method must then be called from the target language with the new name newbar (2, 2.0) when both arguments are supplied or with the original name as bar(2) (one
argument) or bar () (no arguments).

In fact it is possible to use $rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

$rename(bar_2args) Spam: :bar(int i, double d);
%$rename(bar_larg) Spam: :bar(int i);
%rename (bar_default) Spam::bar();

Similarly, the extra overloaded methods can be selectively ignored using $ignore.

Compatibility note: The $rename directive introduced the default argument matching rules in SWIG-1.3.23 at the same time as the changes to wrapping methods with default
arguments was introduced.

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG-1.3.14. The implementation is somewhat unusual when compared to similar tools. For instance, the order in which declarations
appear is largely irrelevant in SWIG. Furthermore, SWIG does not rely upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of overloading support may vary from language to language. As a
general rule, statically typed languages like Java are able to provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Overloaded operators

C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:
double rpart, ipart;
public:
Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c) {
rpart = c.rpart;
ipart = c.ipart;
return *this;
}
Complex operator+(const Complex &c) const {
return Complex(rpart+c.rpart, ipart+c.ipart);
}
Complex operator-(const Complex &c) const {
return Complex(rpart-c.rpart, ipart-c.ipart);
}
Complex operator*(const Complex &c) const {
return Complex(rpart*c.rpart - ipart*c.ipart,
rpart*c.ipart + c.rpart*ipart);
}
Complex operator-() const {
return Complex(-rpart, -ipart);
¥
double re() const { return rpart; }
double im() const { return ipart; }

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of these methods are set to strings like "operator +"or
"operator -". The problem with these names is that they are illegal identifiers in most scripting languages. For instance, you can't just create a method called "operator +"in Python--
there won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the target language). However, the underlying implementation of this is
really managed in a very general way using the $rename directive. For example, in Python a declaration similar to this is used:

$rename(__add__ ) Complex::operator+;

This binds the + operator to a method called __add___ (which is conveniently the same name used to implement the Python + operator). Internally, the generated wrapper code for a wrapped
operator will look something like this pseudocode:

_wrap_Complex add__ (args) {
... get args ...
obj->operator+(args);

When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> a = Complex(3, 4)
>>> b = Complex(5, 2)
>>>c=a+b # Invokes _ add__ method

It is important to realize that there is nothing magical happening here. The $rename directive really only picks a valid method name. If you wrote this:

%rename(add) operator+;

The resulting scripting interface might work like this:

a = Complex(3, 4)

6.16 Overloaded operators
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b = Complex(5, 2)
c = a.add(b) # Call a.operator+(b)

All of the techniques described to deal with overloaded functions also apply to operators. For example:

%ignore Complex::operator=; // Ignore = in class Complex
%ignore *::operator=; // Ignore = in all classes
%ignore operator=; // Ignore = everywhere.

%rename(__sub__ ) Complex::operator-;
$rename(__neg_ ) Complex::operator-(); // Unary -

The last part of this example illustrates how multiple definitions of the operator- method might be handled.
Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

¢ |n C++, it is fairly common to define different versions of the operators to account for different types. For example, a class might also include a friend function like this:

class Complex {
public:

friend Complex operator+(Complex &, double);
Yi

Complex operator+(Complex &, double);

SWIG simply ignores all £riend declarations. Furthermore, it doesn't know how to associate the associated operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

$rename (add_complex_double) operator+(Complex &, double);

Certain operators are ignored by default. For instance,new and delete operators are ignored as well as conversion and index operators. A warning such as the one below is shown:

example.i:12: Warning 503: Can't wrap 'operator []' unless renamed to a valid identifier.

¢ The index operator, operator]| ], is particularly difficult to overload due to differences in C++ implementations. Specifically, the get and set operators in other languages typically are
separated into two methods such that additional logic can be packed into the operations; C# uses this[type key] { get { ... } set { ... }} ,Pythonuses_ getitem _
and __setitem , etc. In C++ if the return type of operator( ] is a reference and the method is const, it is often indicative of the setter, and the getter is usually a const function return
an object by value. In the absence of any hard and fast rules and the fact that there may be multiple index operators, it is up to the user to choose the getter and setter to use by using
%rename as shown earlier.

¢ The semantics of certain C++ operators may not match those in the target language.
6.17 Class extension

New methods can be added to a class using the $extend directive. This directive is primarily used in conjunction with proxy classes to add additional functionality to an existing class. For
example :

gmodule vector

3{

#include "vector.h"
%}

class Vector {
public:
double x, y, z;
Vector () ;
~Vector();
... bunch of C++ methods ...
%extend {
char *__str_ () {
static char temp[256];
sprintf(temp, "[ %g, %g, %g 1", $self->x, $self->y, $self->z);
return &temp[0];

This code adds a __str__ method to our class for producing a string representation of the object. In Python, such a method would allow us to print the value of an object using the print

command.
>>>
>>> v = Vector();
>>> v.x = 3
>>> v.y = 4
>>> v.z = 0

>>> print(v)
[ 3.0, 4.0, 0.0 ]
>>>

The C++ 'this' pointer is often needed to access member variables, methods etc. The $self special variable should be used wherever you could use 'this'. The example above demonstrates
this for accessing member variables. Note that the members dereferenced by $self must be public members as the code is ultimately generated into a global function and so will not have any
access to non-public members. The implicit 'this' pointer that is present in C++ methods is not present in $extend methods. In order to access anything in the extended class or its base class,
an explicit 'this' is required. The following example shows how one could access base class members:

struct Base {
virtual void method(int v) {

}
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int value;
Yi
struct Derived : Base {
b
%extend Derived {
virtual void method(int v) {
$self->Base::method(v); // akin to this->Base::method(v);
$self->value = v; // akin to this->value = v;

The following special variables are expanded if used within a %extend block: $name, $symname, $overname, $decl, $fulldecl, $parentclassname and $parentclasssymname. The Special
variables section provides more information each of these special variables.

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the Adding member functions to C structures section for further details.

Compatibility note: The $extend directive is a new name for the $addmethods directive in SWIG1.1. Since $addmethods could be used to extend a structure with more than just methods,
a more suitable directive name has been chosen.

6.18 Templates

Template type names may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(list<int, 100> *x);

There are some restrictions on the use of non-type arguments. Simple literals are supported, and so are some constant expressions. However, use of '<' and ">' within a constant expressions
currently is not supported by SWIG ('<="and ">=" are though). For example:

void bar(list<int, 100> *x); // OK
void bar(list<int, 2*50> *x); // OK
void bar(list<int, (2>1 ? 100 : 50)> *x) // Not supported

Th

o

type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this code:

typedef int Integer;
void foo(vector<int> *x, vector<Integer> *y);

In this case, vector<Integer> is exactly the same type asvector<int>. The wrapper for foo () will accept either variant.

6.18.1 The %template directive
There are a couple of important points about template wrapping. First, a bare C++ template does not define any sort of runnable object-code for which SWIG can normally create a wrapper.
Therefore, in order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>, array<double>, etc.). Second, an instantiation
name such as vector<int> is generally not a valid identifier name in most target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector.

To illustrate, consider the following class template definition:

template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max) {
data = new T [max];
nitems = 0;
maxitems = max;
}
~List() {
delete [] data;
bi
void append(T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;
}
}
int length() {
return nitems;
}
T get(int n) {
return data[n];
}
}i

By itself, this class template is useless--SWIG simply ignores it because it doesn't know how to generate any code unless a definition of T is provided. The $template directive is required to
instantiate the template for use in a target language. The directive requires an identifier name for use in the target language plus the template for instantiation. The example below instantiates
List<int> for use as a class namedintList

%template(intList) List<int>;

The instantiation expands the template code as a C++ compiler would do and then makes it available under the given identifier name. Essentially it is the same as wrapping the following
concept code where the class template definition has T expanded to int (note that this is not entirely valid syntax):

%rename(intList) List<int>; // Rename to a suitable identifier
class List<int> {
private:

int *data;

int nitems;

int maxitems;
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public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);

The argument to $template () is the name of the instantiation in the target language. The name you choose should not conflict with any other declarations in the interface file with one
exception---it is okay for the template name to match that of a typedef declaration. For example:

%template(intList) List<int>;

typedef List<int> intList; // OK

The $template directive must always appear after the definition of the template to be expanded, so the following will work:

template<class T> class List { ... };
%template(intList) List<int>;

but if %template is used before the template definition, such as:

%template(intList) List<int>;
template<class T> class List { ... };

SWIG will generate an error:

example.i:3: Error: Template 'List' undefined.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template for typenames that are equivalent. For instance, consider this
code:

%template(intList) List<int>;
typedef int Integer;

void foo(List<Integer> *x);

In this case, List<Integer> is exactly the same type asList<int>. Any use of List<Integer> is mapped back to the instantiation of List<int> created earlier. Therefore, it is not
necessary to instantiate a new class for the type Integer (doing so is redundant and will simply result in code bloat).

The template provided to $template for instantiation must be the actual template and not a typedef to a template.

typedef List<int> ListOfInt;

$template(intList) List<int>; // ok
%template(intList) ListOfInt; // illegal - Syntax error

6.18.2 Function templates

SWIG can also generate wrappers for function templates using a similar technique to that shown above for class templates. For example:

// Function template
template<class T> T max(T a, T b) { return a > b ? a : b; }

// Make some different versions of this function
%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

SWIG even supports overloaded templated functions. As usual the $template directive is used to wrap templated functions. For example:

template<class T> void foo(T x) { };
template<class T> void foo(T x, T y) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take two integer arguments.
6.18.3 Default template arguments

The number of arguments supplied to $template should match that in the original template definition. Template default arguments are supported. For example:

template vector<typename T, int max=100> class vector {

Yi
%template(intvec) vector<int>; // OK
%template(vecl000) vector<int, 1000>; // OK

The $template directive should not be used to wrap the same template instantiation more than once in the same scope. This will generate an error. For example:

%template(intList) List<int>;
%template(Listint) List<int>; // Error. Template already wrapped.
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This error is caused because the template expansion results in two identical classes with the same name. This generates a symbol table conflict. Besides, it probably more efficient to only
wrap a specific instantiation only once in order to reduce the potential for code bloat.

6.18.4 Template base classes

When a template is instantiated using $template, information about that class is saved by SWIG and used elsewhere in the program. For example, if you wrote code like this,

%template(intList) List<int>;

class UltraList : public List<int> {

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance correctly. If, on the other hand, nothing is known about
List<int>, you will get a warning message similar to this:

example.h:42: Warning 401. Nothing known about class 'List< int >'. Ignored.
example.h:42: Warning 401. Maybe you forgot to instantiate 'List< int >' using %template.

If a class template inherits from another class template, you need to make sure that base classes are instantiated before derived classes. For example:

template<class T> class Foo {

template<class T> class Bar : public Foo<T> {

// Instantiate base classes first
%template(intFoo) Foo<int>;
%template(doubleFoo) Foo<double>;

// Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting wrapper code (and base classes need to be wrapped before
derived classes). Don't worry--if you get the order wrong, SWIG should generate a warning message.

Occasionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be wrapped. Since SWIG is not able to automatically instantiate
templates for this purpose, you must do it manually. To do this, simply use the empty template instantiation, that is, $template with no name. For example:

// Instantiate traits<double, double>, but don't wrap it.
%template() traits<double, double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For example:

$define TEMPLATE_ WRAP(prefix, T...)
%template(prefix ## Foo) Foo<T >;
%template(prefix ## Bar) Bar<T >;

%enddef

TEMPLATE_WRAP (int, int)

TEMPLATE_WRAP (double, double)

TEMPLATE_WRAP(String, char *)
TEMPLATE_WRAP(PairStringInt, std::pair<string, int>)

Note the use of a vararg macro for the type T. If this wasn't used, the comma in the templated type in the last example would not be possible.
6.18.5 Template specialization

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);

then SWIG will use this code whenever the user expands List<int> . In practice, this may have very little effect on the underlying wrapper code since specialization is often used to provide
slightly modified method bodies (which are ignored by SWIG). However, special SWIG directives such as $typemap, $extend, and so forth can be attached to a specialization to provide
customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when the template argument is a pointer.

template<class T> class List<T*> {
private:

T *data;

int nitems;

6.18 Templates

68



SWIG-4.0 Documentation

int maxitems;
public:
List(int max);
~List();
void append(T obj);
int length();
T get(int n);
}i

SWIG supports both template explicit specialization and partial specialization. Consider:

template<class T1l, class T2> class Foo { }; // (1) primary template
template<> class Foo<double *, int *> { }; // (2) explicit specialization
template<class T1, class T2> class Foo<Tl, T2 *> { }; // (3) partial specialization

SWIG is able to properly match explicit instantiations:

Foo<double *, int *> // explicit specialization matching (2)

SWIG implements template argument deduction so that the following partial specialization examples work just like they would with a C++ compiler:

Foo<int *, int *> // partial specialization matching (3)
Foo<int *, const int *> // partial specialization matching (3)
Foo<int *, int **> // partial specialization matching (3)

6.18.6 Member templates

Member templates are supported. The underlying principle is the same as for normal templates--SWIG can't create a wrapper unless you provide more information about types. For example, a
class with a member function template might look like this:

class Foo {
public:
template<class T> void bar(T x, T y) { ... };

i

To expand the template, simply use $template inside the class.

class Foo {

public:
template<class T> void bar(T x, T y) { ... };
%template(barint) bar<int>;

%template(bardouble) bar<double>;
Yi

Or, if you want to leave the original class definition alone, just do this:

class Foo {
public:
template<class T> void bar(T x, T y) { ... };
Yi
%extend Foo {
%template(barint) bar<int>;
%template(bardouble) bar<double>;
Yi

or simply

class Foo {
public:
template<class T> void bar(T x, T y) { ... };

%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;

In this case, the $extend directive is not needed, and $template does exactly the same job, i.e., it adds two new methods to the Foo class.

Now, if your target language supports overloading, you can even try

%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;

and since the two new wrapped methods have the same name ‘'bar', they will be overloaded, and when called, the correct method will be dispatched depending on the argument type.

When used with members, the 3template directive may be placed in another class template. Here is a slightly perverse example:

// A template
template<class T> class Foo {
public:

// A member template
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template<class S> T bar(S x, Sy) { ... };

// Expand a few member templates
%extend Foo {
%template(bari) bar<int>;
$template(bard) bar<double>;
}

// Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari () and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1l, class T2> struct pair {
T1 first;
T2 second;
pair() : first(T1()), second(T2()) { }
pair(const Tl &x, const T2 &y) : first(x), second(y) { }
template<class Ul, class U2> pair(const pair<Ul, U2> &x)
first(x.first), second(x.second) { }

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. To do that, you could expand a few versions of the constructor in
the class template itself. For example:

%extend pair {
%template(pair) pair<Tl, T2>; // Generate default copy constructor
}i

When using $extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

// Instantiate a few versions
%template(pairii) pair<int, int>;
%template(pairdd) pair<double, double>;

// Create a default constructor only
%extend pair<int, int> {
%template(paird) pair<int, int>; // Default constructor

}i

// Create default and conversion constructors
%extend pair<double, double> {
%template(paird) pair<double, dobule>; // Default constructor
%template(pairc) pair<int, int>; // Conversion constructor
}i

And if your target language supports overloading, then you can try instead:

// Create default and conversion constructors
%extend pair<double, double> {
%template(pair) pair<double, dobule>; // Default constructor
$template(pair) pair<int, int>; // Conversion constructor
b

In this case, the default and conversion constructors have the same name. Hence, SWIG will overload them and define an unique visible constructor, that will dispatch the proper call
depending on the argument type.

6.18.7 Scoping and templates

The $template directive for a class template is the equivalent to an explicit instantiation of a C++ class template. The scope for a valid $template instantiation is the same as the scope
required for a valid explicit instantiation of a C++ template. A definition of the template for the explicit instantiation must be in scope where the instantiation is declared and must not be
enclosed within a different namespace.

For example, a few $template instantiations and C++ explicit instantiations are shown below:

namespace N {
template<typename T> class C {};

}

// valid
%template(cin) N::C<int>;
template class N::C<int>;

// valid

namespace N {
$template(cin) C<int>;
template class C<int>;

}

// valid

using namespace N;
%template(cin) C<int>;
template class C<int>;

// valid
using N::C;
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%template(cin) C<int>;
template class C<int>;

// ill-formed

namespace unrelated {
using N::C;
%template(cin) C<int>;
template class C<int>;

}

// ill-formed

namespace unrelated {
using namespace N;
%template(cin) C<int>;
template class C<int>;

}

// ill-formed
namespace unrelated {
namespace N {
$template(cin) C<int>;
template class C<int>;
}
}

// ill-formed

namespace unrelated {
%template(cin) N::C<int>;
template class N::C<int>;

}

When the scope is incorrect, such as for the ill-formed examples above, an error occurs:

cpp_template scope.i:34: Error: 'C' resolves to 'N::C' and was incorrectly instantiated
in scope 'unrelated' instead of within scope 'N'.

A note for the C++ standard geeks out there; a valid instantiation is one which conforms to the C++03 standard as C++11 made a change to disallow using declarations and using directive:

find a template.

S

// valid C++03, ill-formed C++11
using N::C;
template class C<int>;

Compatibility Note: Versions prior to SWIG-4.0.0 did not error out with incorrectly scoped $template declarations, but this led to numerous subtle template scope problems.

6.18.8 More on templates

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as $rename, $extend, and $typemap can be included directly in template
definitions. For example:

// File : list.h
template<class T> class List {
public:
$rename(__getitem ) get(int);
List(int max);
~List();
T get(int index);
$extend {
char *__str_ () {
/* Make a string representation */

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the class template. For example:

$rename(__getitem ) List::get;
%extend List {
char *__str_ () {
/* Make a string representation */

}* Make a copy */
T *__copy_ () {
return new List<T>(*$self);
}
b

template<class T> class List {
public:
List() { }
T get(int index);

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class definition. These are replaced when the template is expanded.

In addition, the $extend directive can be used to add additional methods to a specific instantiation. For example:
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%template(intList) List<int>;

%extend List<int> {
void blah() {
printf("Hey, I'm an List<int>!\n");
}
}i

It is even possible to extend a class via $extend with template methods, for example:

%$include <std_string.i>

%inline %{
class ExtendMe {
public:
template <typename T>
T do_stuff_ impl(int a, T b, double d) {
return b;
}
}i
%}

%extend ExtendMe {

template<typename T>

T do_overloaded stuff(T b) {

return $self->do_stuff impl(0, b, 4.0);

}
}
$template(do_overloaded stuff) ExtendMe::do_overloaded_stuff<std::string>;
%template(do_overloaded stuff) ExtendMe::do_overloaded_stuff<double>;

The wrapped ExtendMe class will then have two (overloaded) methods called do_overloaded_stuff.

Compatibility Note: Extending a class with template methods was added in version 3.0.12

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final point is that SWIG does not perform extensive error checking
of templates! Specifically, SWIG does not perform type checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler checks

this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this functionality.

As SWIG's template support does not perform type checking $template can be used as early as after a template declaration. You can, and rarely have to, use $template before the
template parameters have been declared. For example:

template <class T> class OuterTemplateClass {};

// The nested class OuterClass::InnerClass inherits from the class template
// OuterTemplateClass<OuterClass::InnerStruct> and thus the template needs
// to be expanded with %template before the OuterClass declaration.
%template(OuterTemplateClass_OuterClass__InnerStruct)
OuterTemplateClass<OuterClass::InnerStruct>

// Don't forget to use %feature("flatnested") for OuterClass::InnerStruct and
// OuterClass::InnerClass if the target language doesn't support nested classes.
class OuterClass {
public:
// Forward declarations:
struct InnerStruct;
class InnerClass;
Yi

struct OuterClass::InnerStruct {};

// Expanding the template at this point with %template is too late as the
// OuterClass::InnerClass declaration is processed inside OuterClass.

class OuterClass::InnerClass : public OuterTemplateClass<InnerStruct> {};

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor. Templates have been more tightly integrated into the parser and type
system in SWIG-1.3.12 and the preprocessor is no longer used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, thestemplate directive introduced a new class name. This name could then be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {

void somemethod() { }
}i

This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {

void somemethod() { }
b

Similar changes apply to typemaps and other customization features.
6.19 Namespaces

Support for C++ namespaces is comprehensive, but by default simple, however, some target languages can turn on more advanced namespace support via the nspace feature, described
later. Code within unnamed namespaces is ignored as there is no external access to symbols declared within the unnamed namespace. Before detailing the default implementation for named
namespaces, it is worth noting that the semantics of C++ namespaces is extremely non-trivial--especially with regard to the C++ type system and class machinery. At a most basic level,
namespaces are sometimes used to encapsulate common functionality. For example:
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namespace math {
double sin(double);
double cos(double);

class Complex {
double im, re;

public:

Yi

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other ways a namespace can be used. For example, selective symbols
can be exported from a namespace with using.

using math::Complex;
double magnitude(Complex *c); // Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

Alternatively, a namespace can be aliased:

namespace M math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head-exploding code like this:

namespace A {
class Foo {
}i

}

namespace B {
namespace C {
using namespace A;
}
typedef C::Foo FooClass;
}

namespace BIGB = B;

namespace D {
using BIGB::FooClass;
class Bar : public FooClass {
}

}i

class Spam : public D::Bar {
}i

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into the target language. Clearly this code defines three different
classes. However, one of those classes is accessible under at least six different names!

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it will be parsed correctly, it will generate compilable wrapper
code, and it will produce a working scripting language module. However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

gmodule foo

namespace foo {
void bar(int);
void spam();

}

namespace bar {
void blah();
}

then SWIG simply creates three wrapper functions bar (), spam( ), and blah() in the target language. SWIG does not prepend the names with a namespace prefix nor are the functions
packaged in any kind of nested scope. Note that the default handling of flattening all the namespace scopes in the target language can be changed via the nspace feature.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a natural correlation between the likely contents of a SWIG module

and the contents of a namespace. For instance, it would not be unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, it
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a namespace in the target language. Or put another way, if you want
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SWIG to keep namespaces separate, simply wrap each namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in the target language. For example:

namespace A {
void foo(int);
}
namespace B {
void foo(double);

}

When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated target language module.
example.i:23. Previous declaration of 'foo'

To resolve this error, simply use $rename to disambiguate the declarations. For example:

%rename(B_foo) B::foo;
namespace A {

void foo(int);
}
namespace B {

void foo(double); // Gets renamed to B_foo

}

Similarly, $ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and they do not result in any code. However, these declarations are
used by the internal type system to track type-names. Therefore, if you have code like this:

namespace A {

typedef int Integer;
}
using namespace A;
void foo(Integer x);

SWIG knows that Integer is the same asA: : Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the $template directive can be used to expand a template defined in a different namespace. For example:

namespace foo {
template<typename T> T max(T a, T b) { return a > b ? a : b; }

}
using foo::max;

%template(maxint) max<int>; // Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).

namespace bar {
using namespace foo;
%template(maxdouble) max<double>; // Okay.

The combination of namespaces and other SWIG directives may introduce subtle scope-related problems. The key thing to keep in mind is that all SWIG generated wrappers are produced in
the global namespace. Symbols from other namespaces are always accessed using fully qualified names---names are never imported into the global space unless the interface happens to do
so with a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done in code fragments such as function bodies, typemaps,
exception handlers, and so forth. For example, consider the following:

namespace foo {
typedef int Integer;
class bar {
public:
bi
}

%extend foo::bar {
Integer add(Integer x, Integer y) {

Integer r = x + y; // Error. Integer not defined in this scope
return r;

In this case, SWIG correctly resolves the added method parameters and return type to foo: : Integer. However, since function bodies aren't parsed and such code is emitted in the global
namespace, this code produces a compiler error about Integer. To fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {
Integer add(Integer x, Integer y) {
foo::Integer r = x + y; // Ok.
return r;

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface, they should also appear in any header files that might have
beenincludedina %{ ... %} section. In other words, don't insert extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as%{ ... %} or $inline %{ ... %} should not be placed inside a namespace declaration. The code emitted by these directives will not be
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enclosed in a namespace and you may get very strange results. If you need to use namespaces with these directives, consider the following:

// Good version
%inline %{
namespace foo {

void bar(int) { ... }

// Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{
void bar(int) { ... } /* I'm bad */
%}
}

Note: When the $extend directive is used inside a namespace, the namespace name is included in the generated functions. For example, if you have code like this,

namespace foo {
class bar {
public:
%extend {
int blah(int x);

the added method blah () is mapped to a functionint foo_bar_blah(foo::bar *self, int x). This function resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same namespace conventions as used in the input file. Thus, if there are no
symbol conflicts in the input, there will be no conflicts in the generated code.

Note: In the same way that no resolution is performed on parameters, a conversion operator name must match exactly to how it is defined. Do not change the qualification of the operator. For
example, suppose you had an interface like this:

namespace foo {
class bar;
class spam {
public:
operator bar(); // Conversion of spam -> bar
}i
}

The following is how the feature is expected to be written for a successful match:

%rename (tofoo) foo::spam::operator bar();

The following does not work as no namespace resolution is performed in the matching of conversion operator names:

%rename (tofoo) foo::spam::operator foo::bar();

Note, however, that if the operator is defined using a qualifier in its name, then the feature must use it too...

%rename (tofoo) foo::spam::operator bar(); // will not match
%$rename (tofoo) foo::spam::operator foo::bar(); // will match
namespace foo {
class bar;
class spam {
public:
operator foo::bar();

Compatibility Note: Versions of SWIG prior to 1.3.32 were inconsistent in this approach. A fully qualified name was usually required, but would not work in some situations.
Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. More advanced handling of namespaces is discussed next.
6.19.1 The nspace feature for namespaces
Some target languages provide support for the nspace feature. The feature can be applied to any class, struct, union or enum declared within a named namespace. The feature wraps the
type within the target language specific concept of a namespace, for example, a Java package or C# namespace. Please see the language specific sections to see if the target language you

are interested in supports the nspace feature.

The feature is demonstrated below for C# using the following example:

%feature("nspace") MyWorld::Material::Color;
gnspace MyWorld::Wrapping::Color; // $nspace is a macro for %feature("nspace")

namespace MyWorld {

namespace Material {
class Color {

namespace Wrapping {
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class Color {

Without the nspace feature directives above or $rename , you would get the following warning resulting in just one of theColor classes being available for use from the target language:

Error: 'Color' is multiply defined in the generated target language module.
Error: Previous declaration of 'Color'

example.i:
example.i:

With the nspace feature the two Color classes are wrapped into the equivalent C# namespaces. A fully qualified constructor call of each these two types in C# is then:

MyWorld.Material.Color materialColor = new MyWorld.Material.Color();
MyWorld.Wrapping.Color wrappingColor = new MyWorld.Wrapping.Color();

Note that the nspace feature does not apply to variables and functions simply declared in a namespace. For example, the following symbols cannot co-exist in the target language without
renaming. This may change in a future version.

namespace MyWorld {

namespace Material
int quantity;
void dispatch();

}

namespace Wrapping {
int quantity;
void dispatch();

}

-~

Compatibility Note: The nspace feature was first introduced in SWIG-2.0.0.

6.20 Renaming templated types in namespaces

As has been mentioned, when %rename includes parameters, the parameter types must match exactly (no typedef or namespace resolution is performed). SWIG treats templated types
slightly differently and has an additional matching rule so unlike non-templated types, an exact match is not always required. If the fully qualified templated type is specified, it will have a higher
precedence over the generic template type. In the example below, the generic template type is used to rename to bbb and the fully qualified type is used to rename toccc.

%rename (bbb) Space::ABC::aaa(T t); // will match but with lower precedence than ccc
%rename(ccc) Space::ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence
// than bbb

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}
bi
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

It should now be apparent that there are many ways to achieve a renaming with %rename. This is demonstrated by the following two examples, which are effectively the same as the above
example. Below shows how %rename can be placed inside a namespace.

namespace Space {

%rename (bbb) ABC::aaa(T t); // will match but with lower precedence than ccc
$rename(ccc) ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence than bbb
%rename(ddd) ABC<Space::XYZ>::aaa(XYZ t); // will not match

}

namespace Space {
class XYz {};
template<typename T> struct ABC {
void aaa(T t) {}
Yi
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

Note that ddd does not match as there is no namespace resolution for parameter types and the fully qualified type must be specified for template type expansion. The following example shows
how %rename can be placed within %extend.

namespace Space {
%extend ABC {
$rename(bbb) aaa(T t); // will match but with lower precedence than ccc
}
%extend ABC<Space::XYZ> {
$rename(ccc) aaa(Space::XYZ t);// will match but with higher precedence than bbb
$rename(ddd) aaa(XYZ t); // will not match

}

namespace Space {
class XYz {};
template<typename T> struct ABC {
void aaa(T t) {}
Yi
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

6.21 Exception specifications

6.20 Renaming templated types in namespaces
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When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaration. For example:

class Error { };

class Foo {
public:

void blah() throw(Error);

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, when possible, rethrowing it into the target language, or converting
itinto an error in the target language otherwise. For example, in Python, you can write code like this:

f = Foo()
try:
f.blah()
except Error, e:
# e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converting it into the target language's exception/error handling mechanism is outlined in the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++ exceptions. To do that, a different set of special SWIG directives are
used. Consult the "Exception handling with %exception*” section for details. The next section details a way of simulating an exception specification or replacing an existing one.

6.22 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methods without exception specifications through the $catches
feature. It is also possible to replace any declared exception specification using the $catches feature. In fact, 3catches uses the same "throws" typemaps that SWIG uses for exception
specifications in handling exceptions. The $catches feature must contain a list of possible types that can be thrown. For each type that is in the list, SWIG will generate a catch handler, in the
same way that it would for types declared in the exception specification. Note that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };

struct Errorl : EBase { };
struct Error2 : EBase { };
struct Error3 : EBase { };
struct Error4 : EBase { };
%catches(Errorl, Error2, ...) Foo::bar();

%catches(EBase) Foo::blah();

class Foo {
public:
void bar();
void blah() throw(Errorl, Error2, Error3, Error4);

For the Foo: :bar () method, which can throw anything, SWIG will generate catch handlers for Exrrorl, Error2 as well as a catch all handler (...). Each catch handler will convert the caught
exception and convert it into a target language error/exception. The catch all handler will convert the caught exception into an unknown error/exception.

Without the $catches feature being attached toFoo: :blah (), SWIG will generate catch handlers for all of the types in the exception specification, that is, Errorl, Error2, Error3,
Error4. However, with the $catches feature above, just a single catch handler for the base class, EBase will be generated to convert the C++ exception into a target language
error/exception.

6.23 Pointers to Members

Starting with SWIG-1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do_op(Object *o, double (Object::*callback)(double, double));
extern double (Object::*fooptr) (double, double);
%constant double (Object::*FO00)(double, double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how to handle them due to implementation differences from standard
C pointers. Readers are strongly advised to consult an advanced text such as the “The Annotated C++ Manual" for specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO
_££0d54a2800000000_m Object f double double double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ structure on most machines.

SWIG's type-checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track of inheritance when checking types. However, no such support
is currently provided for member pointers.

6.24 Smart pointers and operator->()

In some C++ programs, objects are often encapsulated by smart-pointers or proxy classes. This is sometimes done to implement automatic memory management (reference counting) or
persistence. Typically a smart-pointer is defined by a class template where the -> operator has been overloaded. This class is then wrapped around some other class. For example:

// Smart-pointer class
template<class T> class SmartPtr {
T *pointee;
public:
SmartPtr(T *p) : pointee(p) { ... }
T *operator->() {
return pointee;

6.22 Exception handling with %catches
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// Ordinary class
class Foo_Impl {
public:

int x;

virtual void bar();

// Smart-pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;

// Create smart pointer Foo
Foo make_Foo() {
return SmartPtr<Foo_Impl>(new Foo_Impl());

}

// Do something with smart pointer Foo
void do_something(Foo f) {

printf("x = %d\n", f->x);

f->bar();
}

// Call the wrapped smart pointer proxy class in the target language 'Foo'
%template(Foo) SmartPtr<Foo_Impl>;

A key feature of this approach is that by defining operator-> the methods and attributes of the object wrapped by a smart pointer are transparently accessible. For example, expressions
such as these (from the previous example),

f->x
f->bar()

are transparently mapped to the following

(f.operator->())->x;
(f.operator->())->bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever operator->() is encountered in a class, SWIG looks at its returned
type and uses it to generate wrappers for accessing attributes of the underlying object. For example, wrapping the above code produces wrappers like this:

int Foo_x_get(Foo *f) {
return (*f)->x;

}

void Foo_x_set(Foo *f, int value) {
(*£)->x = value;

}

void Foo_bar(Foo *f) {
(*f)->bar();

}

These wrappers take a smart-pointer instance as an argument, but dereference it in a way to gain access to the object returned by operator->(). You should carefully compare these
wrappers to those in the first part of this chapter (they are slightly different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> £ = make Foo()
>>> print f.x

>>> f.bar()

When generating wrappers through a smart-pointer, SWIG tries to generate wrappers for all methods and attributes that might be accessible through operator->(). This includes any
methods that might be accessible through inheritance. However, there are a number of restrictions:

¢« Member variables and methods are wrapped through a smart pointer. Enumerations, constructors, and destructors are not wrapped.

« If the smart-pointer class and the underlying object both define a method or variable of the same name, then the smart-pointer version has precedence. For example, if you have this
code

class Foo {
public:
int x;

}i

class Bar {
public:

int x;

Foo *operator->();
Yi

then the wrapper for Bar: : x accesses the x defined in Bar, and not the x defined in Foo.

If your intent is to only expose the smart-pointer class in the interface, it is not necessary to wrap both the smart-pointer class and the class for the underlying object. However, you must still
tell SWIG about both classes if you want the technique described in this section to work. To only generate wrappers for the smart-pointer class, you can use the %ignore directive. For
example:

%ignore Foo;
class Foo { // Ignored

}i

6.22 Exception handling with %catches



SWIG-4.0 Documentation

class Bar {
public:
Foo *operator->();

Alternatively, you can import the definition of Foo from a separate file using $import.

Note: When a class defines operator->( ), the operator itself is wrapped as a method __deref__ (). For example:

f = Foo() # Smart-pointer
p = £._ deref_ () # Raw pointer from operator->

Note: To disable the smart-pointer behavior, use $ignore to ignore operator->(). For example:

%ignore Bar::operator->;

Note: Smart pointer support was first added in SWIG-1.3.14.
6.25 C++ reference counted objects - reflunref feature

Another similar idiom in C++ is the use of reference counted objects. Consider for example:

class RCObj {
// implement the ref counting mechanism
int add_ref();
int del_ref();
int ref_count();

public:
virtual ~RCObj() = 0;

int ref() const {
return add_ref();

}

int unref() const {
if (ref_count() == || del_ref() == 0 ) {
delete this;
return 0;
}
return ref count();
}
}i

class A : RCObj {
public:

A();

int foo();

}i

class B {
A *_a;

public:
B(A *a) : _a(a) {
a->ref();

}

“B() {
a->unref();
}
bi

int main() {
A *a = new A(); // (count: 0)
a->ref(); // 'a' ref here (count: 1)

B *bl = new B(a); // 'a' ref here (count: 2)

if (1 + 1 2)

B *b2 = new B(a); // 'a' ref here (count: 3)

delete b2; // ‘a' unref, but not deleted (count: 2)
}
delete bl; // ‘a' unref, but not deleted (count: 1)
a->unref(); // 'a' unref and deleted (count: 0)

In the example above, the 'A’ class instance 'a’ is a reference counted object, which can't be deleted arbitrarily since it is shared between the objects 'b1' and 'b2". 'A’ is derived from a
Reference Counted Object 'RCObJ', which implements the ref/unref idiom.

To tell SWIG that 'RCObj' and all its derived classes are reference counted objects, use the "ref* and "unref" features. These are also available as¢refobject and 3unrefobject,
respectively. For example:

%module example

%feature("ref") RCObj "$this->ref();"
%feature("unref") RCObj "$this->unref();"

%include "rcobj.h"
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%include "A.h"

where the code passed to the "ref" and "unref" features will be executed as needed whenever a new object is passed to Python, or when Python tries to release the proxy object instance,
respectively.

On the Python side, the use of a reference counted object is no different to any other regular instance:

def create A():

a = A() # SWIG ref 'a' - new object is passed to Python (count: 1)
bl = B(a) # C++ ref 'a (count: 2)
if 1 + 1 == 2:
b2 = B(a) # C++ ref 'a' (count: 3)
return a # 'bl' and 'b2' are released and deleted, C++ unref 'a' twice (count: 1)
a = create_A() # (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)

Note that the user doesn't explicitly need to call ‘a->ref()' nor ‘a->unref()' (and neither 'delete a'). Instead, SWIG takes cares of executing the "ref" and "unref" calls as needed. If the user doesn't
specify the "reflunref" feature for a type, SWIG will produce code equivalent to defining these features:

%feature("ref") "
%feature("unref") "delete $this;"

In other words, SWIG will not do anything special when a new object is passed to Python, and it will always ‘delete’ the underlying object when Python releases the proxy instance.

The %newobject feature is designed to indicate to the target language that it should take ownership of the returned object. When used in conjunction with a type that has the "ref" feature
associated with it, it additionally emits the code in the "ref" feature into the C++ wrapper. Consider wrapping the following factory function in addition to the above:

%newobject AFactory;
A *AFactory() {
return new A();

}

The AFactory function now acts much like a call to theA constructor with respect to memory handling:

a = AFactory() # SWIG ref 'a' due to %newobject (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)

6.26 Using declarations and inheritance

using declarations are sometimes used to adjust access to members of base classes. For example:

class Foo {
public:

int blah(int x);
Yi

class Bar {
public:

double blah(double x);
b

class FooBar : public Foo, public Bar {
public:

using Foo::blah;

using Bar::blah;

char *blah(const char *x);
}i

In this example, the using declarations make different versions of the overloaded blah () method accessible from the derived class. For example:

FooBar *f;

f->blah(3); // Ok. Invokes Foo::blah(int)
f->blah(3.5); // Ok. Invokes Bar::blah(double)
f->blah("hello"); // Ok. Invokes FooBar::blah(const char *)

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module works just like you would expect:

>>> import example

>>> f = example.FooBar()
>>> f.blah(3)

>>> f.blah(3.5)

>>> f.blah("hello")

using declarations can also be used to change access when applicable. For example:

class Foo {

protected:
int x;
int blah(int x);
}i
class Bar : public Foo {
public:
using Foo::x; // Make x public
using Foo::blah; // Make blah public
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This also works in SWIG---the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derived class and wrapped normally. When copied, the declarations
retain any properties that might have been attached using $rename , $ignore, or $feature. Thus, if a method is ignored in a base class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine-grained control over the declarations that get imported, it may be difficult to manage such declarations in applications that make heavy use
of SWIG customization features. If you can't get using to work correctly, you can always change the interface to the following:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
using Foo::blah;
using Bar::blah;
#else
int blah(int x); // explicitly tell SWIG about other declarations
double blah(double x);
#endif

char *blah(const char *x);
}i

Notes:

¢ |f a derived class redefines a method defined in a base class, then a using declaration won't cause a conflict. For example:

class Foo {
public:
int blah(int );
double blah(double);
Yi

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah(double);
int blah(int);

Yi

¢ Resolving ambiguity in overloading may prevent declarations from being imported by using. For example:

$rename(blah_long) Foo::blah(long);
class Foo {
public:
int blah(int);
long blah(long); // Renamed to blah_ long

Yi
class Bar : public Foo {
public:
using Foo::blah; // Only imports blah(int)

double blah(double x);
Yi

6.27 Nested classes

If the target language supports the nested classes concept (like Java), the nested C++ classes are wrapped as nested target language proxy classes. (In case of Java - "static" nested
classes.) Only public nested classes are wrapped. Otherwise there is little difference between nested and normal classes.

If the target language doesn't support nested classes directly, or the support is not implemented in the language module (like for Python currently), then the visible nested classes are moved to
the same name space as the containing class (nesting hierarchy is "flattened"). The same behaviour may be turned on for C# and Java by the %feature (“flatnested"); If there is a class with the
same name in the outer namespace the inner class (or the global one) may be renamed or ignored:

%rename (Bar_Foo) Bar::Foo;
class Foo {};
class Bar {
public:
class Foo {};
}i

If a nested class, within an outer class, has to be used as a template parameter within the outer class, then the template will have to be instantiated with $template before the beginning of
the outer class. An example can be found in the Templates section.

Compatibility Note: Prior to SWIG-3.0.0, there was limited nested class support. Nested classes were treated as opaque pointers. However, there was a workaround for nested class support
in these older versions requiring the user to replicate the nested class in the global scope, adding in a typedef for the nested class in the global scope and using the "nestedworkaround"”
feature on the nested class. This resulted in approximately the same behaviour as the “flatnested" feature. With proper nested class support now available in SWIG-3.0.0, this feature has been
deprecated and no longer works requiring code changes. If you see the following warning:

example.i:8: Warning 126: The nestedworkaround feature is deprecated

consider using the "flatnested" feature discussed above which generates a non-nested proxy class, like the "nestedworkaround" feature did. Alternatively, use the default nested class code
generation, which may generate an equivalent to a nested proxy class in the target language, depending on the target language support.

SWIG-1.3.40 and earlier versions did not have the nestedworkaround feature and the generated code resulting from parsing nested classes did not always compile. Nested class warnings
could also not be suppressed using %warnfilter.

6.28 A brief rant about const-correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack thereof) will break your program, all programs linked against your
program, and all programs linked against those programs.

6.27 Nested classes
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Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that are free of const-related warnings, SWIG does not make any
attempt to preserve const-correctness in the target language. Thus, it is possible to pass const qualified objects to non-const methods and functions. For example, consider the following code
in C++:

const Object * foo();
void bar(Object *);

// C++ code
void blah() {
bar(foo()); // Error: bar discards const

}i

Now, consider the behavior when wrapped into a Python module:

>>> bar(foo()) # Okay
>>>

Although this is clearly a violation of the C++ type-system, fixing the problem doesn't seem to be worth the added implementation complexity that would be required to support it in the SWIG
run-time type system. There are no plans to change this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might want to consider using another tool if maintaining constness is the
most important part of your project.

6.29 Callbacks to the target language

C/C++ function pointers are often used for callbacks and this is discussed in the Pointers to functions and callbacks section. The callback techniques described therein provide a way to control
callbacks to a C/C++ function but not callbacks into the target language. The techniques described below show how the director feature can be used to support callbacks from C/C++ to the
target language.

6.29.1 Introduction to director classes

The director feature enables the ability for a target language class to derive from a wrapped C++ class. The target language can override virtual methods of a wrapped C++ class, thereby
supporting cross-language polymorphism. Code can ‘call up' from C++ into the target language by simply calling a virtual method overridden in a derived class in the target language. The
wrapped C++ classes that have this ability are termed 'director' classes. The director feature is documented individually in each target language and the reader should locate and read this to
obtain a full understanding of directors.

6.29.2 Using directors and target language callbacks

SWIG's primary goal is to make it possible to call C/C++ code from a target language, however, the director feature enables the reverse. While there isn't simple direct support for calling target
language code from C, the director feature makes this possible. It does require some work and additional wrapper code to be provided by the user. The additional code required must be C++
and not C code and hence may introduce a small dependency on C++ if using a pure C project. In a nutshell, the user must create a C++ base class and turn it into a director class. A virtual
method in the director base class is required. SWIG generates the code to call up into the target language when wrapping the director virtual method.

Let's look at some details next. Consider the same function pointer for a callback called binary_op from the Pointers to functions and callbacks section. For completeness, the code required
for the module and director feature is also shown:

gmodule(directors="1") example

%{

int binary_op(int a, int b, int (*op)(int, int)) {
return op(a, b);

}

%}

The goal is to have a target language function that gets called by binary_op. The target language function should have the equivalent signature as the C/C++ function pointer int (*op)
(int, int).As we are using directors, we need a C++ virtual method with this signature, so let's define the C++ class and pure virtual method first and make it a director class via the
director feature:

%feature("director") BinaryOp;

%inline %{
struct BinaryOp {
virtual int handle(int a, int b) = 0;
virtual ~BinaryOp() {}
}i
%}

o

The following handler_helper function and binary op_wrapper function completes the code needed in the C++/SWIG layer. The binary_op_wrapper function is wrapped by SWIG
and is very similar to the binary_op function, however, it takes a pointer to the director base class BinaryOp instead of a C/C++ function pointer.

%{

static BinaryOp *handler ptr = NULL;

static int handler_helper(int a, int b) {
// Make the call up to the target language when handler_ptr
// is an instance of a target language director class
return handler_ptr->handle(a, b);

}

// If desired, handler ptr above could be changed to a thread-local variable in order to make thread-safe

%}

%inline %{
int binary_op wrapper(int a, int b, BinaryOp *handler) {
handler ptr = handler;
int result = binary op(a, b, &handler_ helper);
handler = NULL;
return result;
}
%}

On the target language side, we need to derive a class from BinaryOp and override the handle method. In Python this could be as simple as:
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import example

# PythonBinaryOp class is defined and derived from C++ class BinaryOp
class PythonBinaryOp(example.BinaryOp):

# Define Python class 'constructor'
def _ init_(self):
# Call C++ base class constructor
example.BinaryOp._ init__ (self)

# Override C++ method: virtual int handle(int a, int b) = 0;
def handle(self, a, b):

# Return the product

return a * b

For this to work from Python, an instance of the PythonBinaryOp class is created and then passed to binary op_wrapper. The net result is the binary_op function will in turn be called
which will call handler_helper which will call the virtualhandle method, that is, the Python methodhandle in the PythonBinaryOp class. The result will be the product of 10 and 20 and
make its way back to Python and hence 200 will be printed with the following code:

handler = PythonBinaryOp()
result = example.binary op wrapper (10, 20, handler)
print result

This has thus demonstrated a C/C++ function pointer calling back into a target language function. The code could be made a little more user friendly by using $rename to provide the original
binary_op name from the target language instead ofbinary_op_wrapper. A C++ functor base class and Python functor class could also be used instead, but these are left as exercises
for the reader.

6.30 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of “The Annotated C++ Reference Manual" by Ellis and Stroustrup. This is the reference document we use to guide a lot
of SWIG's C++ support.

7 SWIG and C++11

e Introduction
* Core language changes
o Rvalue reference and move semantics
o Generalized constant expressions
o Extern template
o |Initializer lists
o Uniform initialization
o Type inference
o Range-based for-loop
o Lambda functions and expressions
o Alternate function syntax
o Object construction improvement
o Explicit overrides and final
o Null pointer constant
o Strongly typed enumerations
o Double angle brackets
o Explicit conversion operators
°
°
°
°
°
°
°
°
°
°
°
°
°
°

Type alias and alias templates
Unrestricted unions
Variadic templates
New character literals
New string literals
User-defined literals
Thread-local storage
Explicitly defaulted functions and deleted functions
Type long long int
Static assertions
Allow sizeof to work on members of classes without an explicit object
Exception specifications and noexcept
Control and query object alignment
Attributes

o Methods with ref-qualifiers

e Standard library changes
o Threading facilities

o Tuple types

o Hash tables

o Regular expressions

o General-purpose smart pointers

o Extensible random number facility

o Wrapper reference

o Polymorphic wrappers for function objects

o Type traits for metaprogramming

o Uniform method for computing return type of function objects

7.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++11 standard. This part of SWIG is still a work in progress.
SWIG supports the new C++ syntax changes with some minor limitations in some areas such as decltype expressions and variadic templates. Wrappers for the new STL types (unordered_

containers, result_of, tuples) are incomplete. The wrappers for the new containers would work much like the C++03 containers and users are welcome to help by adapting the existing
container interface files and submitting them as a patch for inclusion in future versions of SWIG.

7.2 Core language changes

7.2.1 Rvalue reference and move semantics

SWIG correctly parses the rvalue reference syntax '&&', for example the typical usage of it in the move constructor and move assignment operator below:
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class MyClass {
std::vector<int> numbers;
public:
MyClass(MyClass &&other) : numbers(std::move(other.numbers)) {}
MyClass & operator=(MyClass &&other) {
numbers = std::move(other.numbers);
return *this;

Rvalue references are designed for C++ temporaries and so are not very useful when used from non-C++ target languages. Generally you would just ignore them via $ignore before parsing
the class. For example, ignore the move constructor:

%ignore MyClass::MyClass(MyClass &&);

The plan is to ignore move constructors by default in a future version of SWIG. Note that both normal assignment operators as well as move assignment operators are ignored by default in
most target languages with the following warning:

example.i:18: Warning 503: Can't wrap 'operator =' unless renamed to a valid identifier.

7.2.2 Generalized constant expressions

SWIG parses and identifies the keyword constexpr, but cannot fully utilise it. These C++ compile time constants are usable as runtime constants from the target languages. Below shows
example usage for assigning a C++ compile time constant from a compile time constant function:

constexpr int XXX() { return 10; }
constexpr int YYY = XXX() + 100;

When either of these is used from a target language, a runtime call is made to obtain the underlying constant.
7.2.3 Extern template

SWIG correctly parses the keywordsextern template. However, this template instantiation suppression in a translation unit has no relevance outside of the C++ compiler and so is not
used by SWIG. SWIG only uses $template for instantiating and wrapping templates.

template class std::vector<int>; // C++03 explicit instantiation in C++
extern template class std::vector<int>; // C++11 explicit instantiation suppression in C++
%template(VectorInt) std::vector<int>; // SWIG instantiation

7.2.4 Initializer lists

Initializer lists are very much a C++ compiler construct and are not very accessible from wrappers as they are intended for compile time initialization of classes using the special
std::initializer listtype. SWIG detects usage of initializer lists and will emit a special informative warning each time one is used:

example.i:33: Warning 476: Initialization using std::initializer list.

Initializer lists usually appear in constructors but can appear in any function or method. They often appear in constructors which are overloaded with alternative approaches to initializing a
class, such as the std container's push_back method for adding elements to a container. The recommended approach then is to simply ignore the initializer-list constructor, for example:

%ignore Container::Container(std::initializer list<int>);

class Container {

public:
Container(std::initializer_list<int>); // initializer-list constructor
Container();
void push back(const int &);

Alternatively you could modify the class and add another constructor for initialization by some other means, for example by a std: : vector:

%$include <std_vector.i>
class Container {
public:
Container(const std::vector<int> &);
Container(std::initializer list<int>); // initializer-list constructor
Container();
void push back(const int &);

And then call this constructor from your target language, for example, in Python, the following will call the constructor taking the std: : vector:

>>> ¢ = Container( [1, 2, 3, 4] )

If you are unable to modify the class being wrapped, consider ignoring the initializer-list constructor and using %extend to add in an alternative constructor:

%$include <std vector.i>
%extend Container {
Container(const std::vector<int> &elements) {
Container *c = new Container();
for (int element : elements)
c->push_back(element);
return c;
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%ignore Container::Container(std::initializer list<int>);

class Container {

public:
Container(std::initializer list<int>); // initializer-list constructor
Container();
void push_back(const int &);

The above makes the wrappers look is as if the class had been declared as follows:

%$include <std vector.i>

class Container {

public:
Container(const std::vector<int> &);

// Container(std::initializer list<int>); // initializer-list constructor (ignored)
Container();
void push back(const int &);

std::initializer_ list is simply a container that can only be initialized at compile time. As it is just a C++ type, it is possible to write typemaps for a target language container to map onto
std::initializer list.However, this can only be done for a fixed number of elements as initializer lists are not designed to be constructed with a variable number of arguments at
runtime. The example below is a very simple approach which ignores any parameters passed in and merely initializes with a fixed list of fixed integer values chosen at compile time:

$typemap(in) std::initializer_ list<int> {
$1 = {10, 20, 30, 40, 50};
}
class Container {
public:
Container(std::initializer list<int>); // initializer-list constructor
Container();
void push back(const int &);

Any attempt at passing in values from the target language will be ignored and be replaced by {10, 20, 30, 40, 50}.Needless to say, this approach is very limited, but could be improved
upon, but only slightly. A typemap could be written to map a fixed number of elements on to the std: :initializer_list, but with values decided at runtime. The typemaps would be target
language specific.

Note that the default typemap for std: :initializer_list does nothing butissue the warning and hence any user supplied typemaps will override it and suppress the warning.
7.2.5 Uniform initialization

The curly brackets {} for member initialization are fully supported by SWIG:

struct BasicStruct {
int x;

double y;

b

struct AltStruct {
AltStruct(int x, double y) : x {x}, y_{y} {}

int x_;
double y_;
bi

BasicStruct varl{5, 3.2}; // only fills the struct components
AltStruct var2{2, 4.3}; // calls the constructor

Uniform initialization does not affect usage from the target language, for example in Python:

>>> a = AltStruct(10, 142.15)
>>> a.x

10 -

>>> a.y

142.15

7.2.6 Type inference

SWIG supports decltype () with some limitations. Single variables are allowed, however, expressions are not supported yet. For example, the following code will work:

int i;
decltype(i) 3J;

However, using an expression inside the decltype results in syntax error:

int i; int j;
decltype(i+j) k; // syntax error

7.2.7 Range-based for-loop
This feature is part of the implementation block only. SWIG ignores it.
7.2.8 Lambda functions and expressions

SWIG correctly parses most of the Lambda functions syntax. For example:
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auto val = [] { return something; };
auto sum = [](int x, int y) { return x+y; };
auto sum = [](int x, int y) -> int { return x+y; };

The lambda functions are removed from the wrappers for now, because of the lack of support for closures (scope of the lambda functions) in the target languages.

Lambda functions used to create variables can also be parsed, but due to limited support of auto when the type is deduced from the expression, the variables are simply ignored.

auto six = [](int x, int y) { return x+y; }(4, 2);

H

Better support should be available in a later release.
7.2.9 Alternate function syntax

SWIG fully supports the new definition of functions. For example:

struct SomeStruct {
int FuncName(int x, int y);
b

can now be written as in C++11:

struct SomeStruct {
auto FuncName(int x, int y) -> int;
Yi

auto SomeStruct::FuncName(int x, int y) -> int {
return x + y;

}

The usage in the target languages remains the same, for example in Python:

>>> a = SomeStruct()
>>> a.FuncName(10, 5)
15

SWIG will also deal with type inference for the return type, as per the limitations described earlier. For example:

auto square(float a, float b) -> decltype(a);

7.2.10 Object construction improvement

There are three parts to object construction improvement. The first improvement is constructor delegation such as the following:

class A {
public:
int a;
int b;
int cj;

A() : A(10) {}

A(int aa) : A(aa, 20) {}

A(int aa, int bb) : A(aa, bb, 30) {}

A(int aa, int bb, int cc) { a=aa; b=bb; c=cc; }

where peer constructors can be called. SWIG handles this without any issue.

The second improvement is constructor inheritance via a using declaration. This is parsed correctly, but the additional constructors are not currently added to the derived proxy class in the
target language. An example is shown below:

class BaseClass {
public:

BaseClass(int iValue);
}i

class DerivedClass: public BaseClass {

public:

using BaseClass::BaseClass; // Adds DerivedClass(int) constructor
}i

The final part is member initialization at the site of the declaration. This kind of initialization is handled by SWIG.

class SomeClass {
public:
SomeClass() {}
explicit SomeClass(int new_value) : value(new_value) {}

int value = 5;

}i

7.2.11 Explicit overrides and final

The special identifiers final and override can be used on methods and destructors, such as in the following example:
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struct BaseStruct {
virtual void ab() const = 0;
virtual void cd();
virtual void ef();
virtual ~BaseStruct();

Yi

struct DerivedStruct : BaseStruct {
virtual void ab() const override;
virtual void cd() final;
virtual void ef() final override;
virtual ~DerivedStruct() override;

7.2.12 Null pointer constant
The nullptr constant is mostly unimportant in wrappers. In the few places it has an effect, it is treated like NULL.
7.2.13 Strongly typed enumerations

SWIG supports strongly typed enumerations and parses the newenum class syntax and forward declarator for the enums, such as:

enum class MyEnum : unsigned int;

Strongly typed enums are often used to avoid name clashes such as the following:

struct Color {
enum class RainbowColors : unsigned int {
Red, Orange, Yellow, Green, Blue, Indigo, Violet

Yi

enum class WarmColors {
Yellow, Orange, Red
Yi

// Note normal enum
enum PrimeColors {

Red=100, Green, Blue
Yi

There are various ways that the target languages handle enums, so it is not possible to precisely state how they are handled in this section. However, generally, most scripting languages

mangle in the strongly typed enumeration's class name, but do not use any additional mangling for normal enumerations. For example, in Python, the following code

print Color.RainbowColors Red, Color.WarmColors Red, Color.Red

results in

0 2 100

The strongly typed languages often wrap normal enums into an enum class and so treat normal enums and strongly typed enums the same. The equivalent in Java is:

System.out.println(Color.RainbowColors.Red.swigValue() + " " + Color.WarmColors.Red.swigValue() + " " + Color.PrimeColors.Red.swigValy

7.2.14 Double angle brackets

SWIG correctly parses the symbols >> as closing the template block, if found inside it at the top level, or as the right shift operator >> otherwise.

std::vector<std::vector<int>> myIntTable;

7.2.15 Explicit conversion operators

SWIG correctly parses the keyword explicit for operators in addition to constructors now. For example:

class U {
public:
int uj;

}i

class V {
public:
int v;

}i

class TestClass {

public:
//implicit converting constructor
TestClass(U const &val) { t=val.u; }

// explicit constructor
explicit TestClass(V const &val) { t=val.v; }

int t;
}i

struct Testable {
// explicit conversion operator
explicit operator bool() const {

return false;
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The effect of explicit constructors and operators has little relevance for the proxy classes as target languages don't have the same concepts of implicit conversions as C++. Conversion
operators either with or without explicit need renaming to a valid identifier name in order to make them available as a normal proxy method.

7.2.16 Type alias and alias templates

A type alias is a statement of the form:

using PFD = void (*)(double); // New introduced syntax

which is equivalent to the old style typedef:

typedef void (*PFD)(double); // The old style

The following is an example of an alias template:

template< typename T1, typename T2, int N >
class SomeType {

template< typename T2 >
using TypedefName = SomeType<char*, T2, 5>;

SWIG supports both type aliasing and alias templates. However, in order to use an alias template, two $template directives must be used:

%template(SomeTypeBool) SomeType<char*, bool, 5>;
%template() TypedefName<bool>;

Firstly, the actual template is instantiated with a name to be used by the target language, as per any template being wrapped. Secondly, the empty template instantiation, $template(), is
required for the alias template. This second requirement is necessary to add the appropriate instantiated template type into the type system as SWIG does not automatically instantiate
templates. See the Templates section for more general information on wrapping templates.

7.2.17 Unrestricted unions

SWIG fully supports any type inside a union even if it does not define a trivial constructor. For example, the wrapper for the following code correctly provides access to all members in the
union:

struct point {
point() {}
point(int x, int y) : x (x), y_(y) {}
int x_, y_;

}i

#include <new> // For placement 'new' in the constructor below
union P {

int z;

double w;

point p; // Illegal in C++03; legal in C++11.

// Due to the point member, a constructor definition is required.

P() {

new(&p) point();

} pl;

7.2.18 Variadic templates

SWIG supports the variadic templates syntax (inside the <> block, variadic class inheritance and variadic constructor and initializers) with some limitations. The following code is correctly
parsed:

template <typename... BaseClasses> class ClassName : public BaseClasses... {
public:
ClassName (BaseClasses &&... baseClasses) : BaseClasses(baseClasses)... {}

}

For now however, the $template directive only accepts one parameter substitution for the variable template parameters.

%template(MyVariantl) ClassName<> // zero argument not supported yet
$template(MyVariant2) ClassName<int> // ok
%template(MyVariant3) ClassName<int, int> // too many arguments not supported yet

Support for the variadic sizeof () function is correctly parsed:

const int SIZE = sizeof...(ClassName<int, int>);

In the above example SIZE is of course wrapped as a constant.
7.2.19 New character literals

C++11 adds support for UCS-2 and UCS-4 character literals. These character literals are preceded by either 'u’ or 'U'.

char16_t a=mu'a';
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char32_t b = U'b';

Compatibility note: SWIG-4.0.0 was the first version to support these Universal Coded Character Set (UCS) character literals.
7.2.20 New string literals

SWIG supports wide string and Unicode string constants and raw string literals.

// New string literals

wstring aa = L"Wide string";

const char *bb = u8"UTF-8 string";
const charlé_t *cc = u"UTF-16 string";
const char32_t *dd = U"UTF-32 string";

// Raw string literals

const char *XX = ")I'm an \"ascii\" \\ string.";

const char *ee = R"XXX()I'm an "ascii" \ string.)XXX"; // same as xx
wstring ff = LR"XXX(I'm a "raw wide" \ string.)XXX";

const char *gg = uBR"XXX(I'm a "raw UTF-8" \ string.)XXX";

const charlé_t *hh = uR"XXX(I'm a "raw UTF-16" \ string.)XXX";

const char32_t *ii = UR"XXX(I'm a "raw UTF-32" \ string.)XXX";

Non-ASCII string support varies quite a bit among the various target languages though.

Note: There is a bug currently where SWIG's preprocessor incorrectly parses an odd number of double quotes inside raw string literals.
7.2.21 User-defined literals

SWIG parses the declaration of user-defined literals, that is, the operator "" _mysuffix() function syntax.

Some examples are the raw literal:

OutputType operator "" _myRawLiteral(const char * value);

numeric cooked literals:

OutputType operator "" _mySuffixIntegral(unsigned long long);
OutputType operator "" _mySuffixFloat(long double);

and cooked string literals:

OutputType operator "" _mySuffix(const char * string_values, size_t num_chars);

OutputType operator "" _mySuffix(const wchar_t * string values, size_t num chars);
OutputType operator "" _mySuffix(const charlé_t * string values, size_t num chars);
OutputType operator "" _mySuffix(const char32_t * string_values, size_t num_chars);

Like other operators that SWIG parses, a warning is given about renaming the operator in order for it to be wrapped:

example.i:27: Warning 503: Can't wrap 'operator "" _myRawLiteral' unless renamed to a valid identifier.

If %rename is used, then it can be called like any other wrapped method. Currently you need to specify the full declaration including parameters for %rename:

$rename (MyRawLiteral) operator"" _myRawLiteral(const char * value);

Or if you just wish to ignore it altogether:

%$ignore operator "" _myRawLiteral(const char * value);

Note that use of user-defined literals such as the following still give a syntax error:

OutputType varl = "1234" suffix;
OutputType var2 = 1234 suffix;
OutputType var3 = 3.1416_suffix;

7.2.22 Thread-local storage

SWIG correctly parses the thread_local keyword. For example, variables reachable by the current thread can be defined as:

struct A {
static thread_local int val;

}i

thread local int global val;

The use of the thread_local storage specifier does not affect the wrapping process; it does not modify the wrapper code compared to when it is not specified. A variable will be thread local
if accessed from different threads from the target language in the same way that it will be thread local if accessed from C++ code.

7.2.23 Explicitly defaulted functions and deleted functions

SWIG handles explicitly defaulted functions, that is,= default added to a function declaration. Deleted definitions, which are also called deleted functions, have = delete added to the
function declaration. For example:

struct NonCopyable {
NonCopyable & operator=(const NonCopyable &) = delete; /* Removes operator= */
NonCopyable(const NonCopyable &) = delete; /* Removes copy constructor */
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NonCopyable() = default; /* Explicitly allows the empty constructor */
Yi

Wrappers for deleted functions will not be available in the target language. Wrappers for defaulted functions will of course be available in the target language. Explicitly defaulted functions have

no direct effect for SWIG wrapping as the declaration is handled much like any other method declaration parsed by SWIG.

Deleted functions are also designed to prevent implicit conversions when calling the function. For example, the C++ compiler will not compile any code which attempts to use an int as the type

of the parameter passed to £ below:

struct NoInt {
void f(double 1i);
void f(int) = delete;
Yi

This is a C++ compile time check and SWIG does not make any attempt to detect if the target language is using an int instead of a double though, so in this case it is entirely possible to pass

an int instead of a double to £ from Java, Python etc.
7.2.24 Type long long int
SWIG correctly parses and uses the newlong long type already introduced in C99 some time ago.

7.2.25 Static assertions

SWIG correctly parses the new static_assert declarations (though 3.0.12 and earlier had a bug which meant this wasn't accepted at file scope). This is a C++ compile time directive so

there isn't anything useful that SWIG can do with it.

template <typename T>
struct Check {

static_assert(sizeof(int) <= sizeof(T), "not big enough");
}i

7.2.26 Allow sizeof to work on members of classes without an explicit object

SWIG can parse the new sizeof() on types as well as on objects. For example:

struct A {
int member;
b

const int SIZE = sizeof(A::member); // does not work with C++03. Okay with C++11

In Python:

>>> SIZE
8

7.2.27 Exception specifications and noexcept

C++11 added in the noexcept specification to exception specifications to indicate that a function simply may or may not throw an exception, without actually naming any exception. SWIG
understands these, although there isn't any useful way that this information can be taken advantage of by target languages, so it is as good as ignored during the wrapping process. Below are

some examples of noexcept in function declarations:

static void noexl() noexcept;
int noex2(int) noexcept(true);
int noex3(int, bool) noexcept(false);

7.2.28 Control and query object alignment

An alignof operator is used mostly within C++ to return alignment in number of bytes, but could be used to initialize a variable as shown below. The variable's value will be available for

access by the target language as any other variable's compile time initialised value.

const int alignl = alignof(A::member);

The alignas specifier for variable alignment is not yet supported. Example usage:

struct alignas(16) S {
int num;
}i
alignas(double) unsigned char c[sizeof(double)];

Use the preprocessor to work around this for now:

#define alignas(T)

7.2.29 Attributes

Attributes such as those shown below, are not yet supported and will give a syntax error.

int [[attrl]] i [[attr2, attr3]];

[ [noreturn, nothrow]] void f [[noreturn]] ();

7.2.30 Methods with ref-qualifiers
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C++11 non-static member functions can be declared with ref-qualifiers. Member functions declared with a & Ivalue ref-qualifiers are wrapped like any other function without ref-qualifiers.
Member functions declared with a && rvalue ref-qualifiers are ignored by default as they are unlikely to be required from non-C++ languages where the concept of rvalue-ness for the implied
*this pointer does not apply. The warning is hidden by default, but can be displayed as described in the section on Enabling extra warnings.

Consider:

struct RQ {
void ml(int x) &;
void m2(int x) &&;

}i

The only wrapped method will be the Ivalue ref-qualified method m1 and if SWIG is run with the -Wextra command-line option, the following warning will be issued indicating m2 is not
wrapped:

example.i:7: Warning 405: Method with rvalue ref-qualifier m2(int) && ignored.

If you unignore the method as follows, wrappers for m2 will be generated:

2feature("ignore", "0") RQ::m2(int x) &&;
struct RQ {

void ml(int x) &;

void m2(int x) &&;

Inspection of the generated C++ code, will show that std: :move is used on the instance of the RQ * class:

RQ *argl = (RQ *) 0 ;
int arg2 ;

argl = ...marshalled from target language...

arg2 = ...marshalled from target language...

std::move(*argl).m2(arg2);

This will compile but when run, the move effects may not be what you want. As stated earlier, rvalue ref-qualifiers aren't really applicable outside the world of C++. However, if you really know

what you are doing, full control over the call to the method is possible via the low-level "action" feature. This feature completely replaces the call to the underlying function, that is, the last line
in the snippet of code above.

%feature("ignore", "0") RQ::m2(int x) &&;
2feature("action") RQ::m2(int x) && %{
RQ().m2(arg2);
%}
struct RQ {
void ml(int x) &;
void m2(int x) &&;
b

resulting in:

RQ *argl = (RQ *) 0 ;
int arg2 ;

argl = ...marshalled from target language...
arg2 = ...marshalled from target language...

RQ().m2(arg2);

Compatibility note: SWIG-4.0.0 was the first version to support ref-qualifiers.
7.3 Standard library changes
7.3.1 Threading facilities

SWIG does not currently wrap or use any of the new threading classes introduced (thread, mutex, locks, condition variables, task). The main reason is that SWIG target languages offer their
own threading facilities so there is limited use for them.

7.3.2 Tuple types

SWIG does not provide library files for the new tuple types yet. Variadic template support requires further work to provide substantial tuple wrappers.

7.3.3 Hash tables

The new hash tables in the STL are unordered_set, unordered_multiset, unordered map, unordered_multimap . These are not available in all target languages. Any missing
support can in principle be easily implemented by adapting the current STL containers.

7.3.4 Regular expressions
While SWIG could provide wrappers for the new C++11 regular expressions classes, there is little need as the target languages have their own regular expression facilities.

7.3.5 General-purpose smart pointers

SWIG provides special smart pointer handling for std: : shared ptr in the same way it has support for boost: : shared_ptr. Please see the shared_ptr smart pointer library section. There
is no special smart pointer handling available for std: :weak_ptr and std: :unique_ptr yet.

7.3.6 Extensible random number facility
This feature extends and standardizes the standard library only and does not effect the C++ language nor SWIG.

7.3.7 Wrapper reference

7.3 Standard library changes 91



SWIG-4.0 Documentation

Wrapper references are similar to normal C++ references but are copy-constructible and copy-assignable. They could conceivably be used in public APIs. There is no special support for
std::reference_wrapper in SWIG though. Users would need to write their own typemaps if wrapper references are being used and these would be similar to the plain C++ reference
typemaps.

7.3.8 Polymorphic wrappers for function objects

SWIG supports functor classes in a few languages in a very natural way. However nothing is provided yet for the new std: : function template. SWIG will parse usage of the template like
any other template.

$rename(__call__ ) Test::operator(); // Default renaming used for Python

struct Test {
bool operator()(int x, int y); // function object
Yi

#include <functional>
std::function<void (int, int)> pF = Test; // function template wrapper

Example of supported usage of the plain functor from Python is shown below. It does not involve std: : function.

= Test()
= t(1, 2) # invoke C++ function object

ot
Il

7.3.9 Type traits for metaprogramming

The type_traits functions to support C++ metaprogramming is useful at compile time and is aimed specifically at C++ development:

#include <type traits>

// First way of operating.
template< bool B > struct algorithm {

template< class Tl, class T2 > static int do_it(Tl &, T2 &) { /*...*/ return 1; }
b

// Second way of operating.
template<> struct algorithm<true> {

template< class Tl, class T2 > static int do_it(T1, T2) { /*...*/ return 2; }
}i

// Instantiating 'elaborate' will automatically instantiate the correct way to operate, depending on the types used.
template< class T1, class T2 > int elaborate(Tl A, T2 B) {

// Use the second way only if 'T1' is an integer and if 'T2' is a floating point,

// otherwise use the first way.

return algorithm< std::is_integral<Tl>::value && std::is_floating_ point<T2>::value >::do_it(A, B);

}

SWIG correctly parses the template specialization, template types etc. However, metaprogramming and the additional support in the type_traits header is really for compile time and is not
much use at runtime for the target languages. For example, as SWIG requires explicit instantiation of templates via $template, there isn't much that std: :is_integral<int> is going to
provide by itself. However, template functions using such metaprogramming techniques might be useful to wrap. For example, the following instantiations could be made:

%template(Elaborate) elaborate<int, int>;
%template(Elaborate) elaborate<int, double>;

Then the appropriate algorithm can be called for the subset of types given by the above $template instantiations from a target language, such as Python:

>>> Elaborate(0, 0)

1

>>> Elaborate(0, 0.0)
2

7.3.10 Uniform method for computing return type of function objects

The new std: :result_of class introduced in the <functional> header provides a generic way to obtain the return type of a function type via std: :result_of: :type. There isn't any
library interface file to support this type. With a bit of work, SWIG will deduce the return type of functions when used in std: : result_of using the approach shown below. The technique
basically forward declares the std: :result_of template class, then partially specializes it for the function types of interest. SWIG will use the partial specialization and hence correctly use
the std: :result_of::type provided in the partial specialization.

%inline %{

#include <functional>

typedef double(*fn_ptr) (double);
%}

namespace std {
// Forward declaration of result_of
template<typename Func> struct result of;
// Add in a partial specialization of result_of
template<> struct result_of< fn_ptr(double) > {

typedef double type;

Yi

}

%template() std::result of< fn_ptr(double) >;
%inline %{
double square(double x) {

return (x * x);

}

template<class Fun, class Arg>
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typename std::result of<Fun(Arg)>::type test_result_ impl(Fun fun, Arg arg) {
return fun(arg);

}

%}

$template(test_result) test_result_impl< fn_ptr, double >;
%constant double (*SQUARE) (double) = square;

Note the first use of $template which SWIG requires to instantiate the template. The empty template instantiation suffices as no proxy class is required for

std::result_of<Fun(Arg)>::type as this type is really just a double. The second $template instantiates the template function which is being wrapped for use as a callback. The

%constant can then be used for any callback function as described in Pointers to functions and callbacks.

Example usage from Python should give the not too surprising result:

>>> test_result(SQUARE, 5.0)
25.0

Phew, that is a lot of hard work to get a callback working. You could just go with the more attractive option of just using double as the return type in the function declaration instead of

result_of!

8 SWIG and C++14

e Introduction
e Core language changes

o Binary integer literals
e Standard library changes

8.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++14 standard. There isn't much in C++14 that affects SWIG, however, work has only just begun on adding

C++14 support.

Compatibility note: SWIG-4.0.0 is the first version to support any C++14 features.
8.2 Core language changes

8.2.1 Binary integer literals

C++14 added binary integer literals and SWIG supports these. Example:

int b = 0b101011;

8.3 Standard library changes

9 SWIG and C++17

® Introduction
e Core language changes
o Nested namespace definitions
o UTF-8 character literals
o Hexadecimal floating literals
e Standard library changes

9.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++17 standard. There isn't much in C++17 that affects SWIG, however, work has only just begun on adding

C++17 support.

Compatibility note: SWIG-4.0.0 is the first version to support any C++17 features.
9.2 Core language changes

9.2.1 Nested namespace definitions

C++17 offers a more concise syntax for defining namespaces. SWIG has support for nested namespace definitions such as:

namespace A::B::C {

}

This is the equivalent to the C++98 namespace definitions:

namespace A {
namespace B {
namespace C {

}
}
}

9.2.2 UTF-8 character literals

8.1 Introduction
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C++17 added UTF-8 (u8) character literals. These are of type char. Example:

char a = u8'a';

9.2.3 Hexadecimal floating literals

C++17 added hexadecimal floating literals. For example:

double f = 0xF.68p2;

9.3 Standard library changes

10 Preprocessing

File inclusion

Eile imports

Conditional Compilation

Macro Expansion

SWIG Macros

C99 and GNU Extensions

Preprocessing and delimiters
o Preprocessing and %f{ ... %} & " ... " delimiters
o Preprocessing and { ... } delimiters

® Preprocessor and Typemaps

Viewing preprocessor output

The #error and #warning directives

SWIG includes its own enhanced version of the C preprocessor. The preprocessor supports the standard preprocessor directives and macro expansion rules. However, a number of
modifications and enhancements have been made. This chapter describes some of these modifications.

10.1 File inclusion

To include another file into a SWIG interface, use the $include directive like this:

%include "pointer.i"

Unlike, #include, $include includes each file once (and will not reload the file on subsequent $include declarations). Therefore, it is not necessary to use include-guards in SWIG
interfaces.

By default, the #include is ignored unless you run SWIG with the -includeall option. The reason for ignoring traditional includes is that you often don't want SWIG to try and wrap
everything included in standard header system headers and auxiliary files.

10.2 File imports

SWIG provides another file inclusion directive with the $import directive. For example:

%import "foo.i"

The purpose of $import is to collect certain information from another SWIG interface file or a header file without actually generating any wrapper code. Such information generally includes

type declarations (e.g., typedef) as well as C++ classes that might be used as base-classes for class declarations in the interface. The use of $import is also important when SWIG is used

to generate extensions as a collection of related modules. This is an advanced topic and is described in later in the Working with Modules chapter.

The -importall directive tells SWIG to follow all#include statements as imports. This might be useful if you want to extract type definitions from system header files without generating any

wrappers.
10.3 Conditional Compilation

SWIG fully supports the use of #if, #ifdef, #ifndef, #else, #endif to conditionally include parts of an interface. The following symbols are predefined by SWIG when it is parsing the

interface:
SWIG Always defined when SWIG is processing a file
SWIGIMPORTED Defined when SWIG is importing a file with %import

SWIG_VERSION

SWIG_JAVASCRIPT_JSC
SWIG_JAVASCRIPT V8

9.3 Standard library changes

Hexadecimal (binary-coded decimal) number containing SWIG version,
such as 0x010311 (corresponding to SWIG-1.3.11).

SWIGCSHARP Defined when using C#

SWIGD Defined when using D

SWIGGO Defined when using Go
SWIGGUILE Defined when using Guile
SWIGJAVA Defined when using Java
SWIGJAVASCRIPT Defined when using Javascript

Defined when using Javascript with -jsc
Defined when using Javascript with -v8 or -node

SWIGLUA Defined when using Lua
SWIGMZSCHEME Defined when using Mzscheme
SWIGOCAML Defined when using OCaml
SWIGOCTAVE Defined when using Octave
SWIGPERL Defined when using Perl
SWIGPHP Defined when using PHP (any version)
SWIGPHP7 Defined when using PHP7
SWIGPYTHON Defined when using Python
SWIGR Defined when using R
SWIGRUBY Defined when using Ruby
SWIGSCILAB Defined when using Scilab
SWIGTCL Defined when using Tcl
SWIGXML Defined when using XML
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In addition, SWIG defines the following set of standard C/C++ macros:

__LINE_ Current line number

_ FILE Current file name

_ STDC___ Defined to indicate ISO C
__cplusplus Defined when -c++ option used

The following are language specific symbols that might be defined:

SWIG_D_VERSION Unsigned integer target version when using D
SWIGGO_CGO Defined when using Go for cgo

SWIGGO_GCCGO Defined when using Go for gccgo

SWIGGO_ INTGO_SIZE Size of the Go type int when using Go (32 or 64)
SWIGPYTHON_PY3 Defined when using Python with -py3
SWIGPYTHON_BUILTIN Defined when using Python with -builtin
SWIG_RUBY_AUTORENAME Defined when using Ruby with -autorename

Interface files can look at these symbols as necessary to change the way in which an interface is generated or to mix SWIG directives with C code.
10.4 Macro Expansion

Traditional preprocessor macros can be used in SWIG interfaces. Be aware that the #define statement is also used to try and detect constants. Therefore, if you have something like this in
your file,

#ifndef _FOO_H 1
#define _FOO_H 1

#endif

you may get some extra constants such as _F0O_H showing up in the scripting interface.

More complex macros can be defined in the standard way. For example:

#define EXTERN extern
#ifdef _ STDC__

#define ISOC_(args) (args)
#else

#define ISOC_(args) ()
#endif

The following operators can appear in macro definitions:

o #x
Converts macro argument x to a string surrounded by double quotes ("x").
o x ## y
Concatenates x and y together to form xy.
. \x\
If x is a string surrounded by double quotes, do nothing. Otherwise, turn into a string like #x. This is a non-standard SWIG extension.

10.5 SWIG Macros

SWIG provides an enhanced macro capability with the $define and $enddef directives. For example:

%define ARRAYHELPER(type, name)
%inline %{
type *new_ ## name (int nitems) {
return (type *) malloc(sizeof(type)*nitems);
}
void delete_ ## name(type *t) {
free(t);
}
type name ## _get(type *t, int index) {
return t[index];
}
void name ## _set(type *t, int index, type val) {
t[index] = val;
}
%}
%enddef

ARRAYHELPER(int, IntArray)
ARRAYHELPER (double, DoubleArray)

The primary purpose of $define is to define large macros of code. Unlike normal C preprocessor macros, it is not necessary to terminate each line with a continuation character (\)--the macro
definition extends to the first occurrence of $endde£. Furthermore, when such macros are expanded, they are reparsed through the C preprocessor. Thus, SWIG macros can contain all other
preprocessor directives except for nested $define statements.

The SWIG macro capability is a very quick and easy way to generate large amounts of code. In fact, many of SWIG's advanced features and libraries are built using this mechanism (such as
C++ template support).

10.6 C99 and GNU Extensions

SWIG-1.3.12 and newer releases support variadic preprocessor macros. For example:

#define DEBUGF(fmt, ...) fprintf(stderr, fmt, _ VA ARGS_ )

When used, any extra arguments to . . . are placed into the special variable __ VA_ARGS__. This also works with special SWIG macros defined using $define.
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SWIG allows a variable number of arguments to be empty. However, this often results in an extra comma (, ) and syntax error in the resulting expansion. For example:

DEBUGF ("hello"); --> fprintf(stderr, "hello", );

To get rid of the extra comma, use ## like this:

#define DEBUGF(fmt, ...) fprintf(stderr, fmt, ##_ VA ARGS_ )

SWIG also supports GNU-style variadic macros. For example:

#define DEBUGF(fmt, args...) fprintf(stdout, fmt, args)

Comment: It's not entirely clear how variadic macros might be useful to interface building. However, they are used internally to implement a number of SWIG directives and are provided to
make SWIG more compatible with C99 code.

10.7 Preprocessing and delimiters

The preprocessor handles { }, " " and %{ %} delimiters differently.
10.7.1 Preprocessing and %{ ... %} & " ... " delimiters

The SWIG preprocessor does not process any text enclosed in a code block %({ ... %}. Therefore, if you write code like this,

3{
#ifdef NEED_BLAH
int blah() {

}
#endif
%}

the contents of the ${ ... %} block are copied without modification to the output (including all preprocessor directives).
10.7.2 Preprocessing and { ... } delimiters

SWIG always runs the preprocessor on text appearing inside { ... }.However, sometimes it is desirable to make a preprocessor directive pass through to the output file. For example:

%extend Foo {
void bar() {
#ifdef DEBUG
printf("I'm in bar\n");
#endif

By default, SWIG will interpret the #ifdef DEBUG statement. However, if you really wanted that code to actually go into the wrapper file, prefix the preprocessor directives with % like this:

%extend Foo {
void bar() {
$#ifdef DEBUG
printf("I'm in bar\n");
$#endif

SWIG will strip the extra % and leave the preprocessor directive in the code.

10.8 Preprocessor and Typemaps

Typemaps support a special attribute called noblock where the { ... } delimiters can be used, but the delimiters are not actually generated into the code. The effect is then similar to using " or

%({ %} delimiters but the code is run through the preprocessor. For example:

#define SWIG_macro(CAST) (CAST)$input
$typemap(in) Int {$1= SWIG_macro(int);}

might generate

{
argl=(int)jargl;
}

whereas

#define SWIG_macro(CAST) (CAST)S$input
$typemap(in, noblock=1) Int {$1= SWIG_macro(int);}

might generate

argl=(int)jargl;

and

10.7 Preprocessing and delimiters
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#define SWIG_macro(CAST) (CAST)s$input
$typemap(in) Int ${$1=SWIG_macro(int);%}

would generate

argl=SWIG_macro(int);

10.9 Viewing preprocessor output

Like many compilers, SWIG supports a -E command line option to display the output from the preprocessor. When the -E option is used, SWIG will not generate any wrappers. Instead the
results after the preprocessor has run are displayed. This might be useful as an aid to debugging and viewing the results of macro expansions.

10.10 The #error and #warning directives

SWIG supports the commonly used #warning and #error preprocessor directives. The #warning directive will cause SWIG to issue a warning then continue processing. The #error
directive will cause SWIG to exit with a fatal error. Example usage:

#error "This is a fatal error message"
#warning "This is a warning message"

The #error behaviour can be made to work like #warning if the —~cpperraswarn commandline option is used. Alternatively, the #pragma directive can be used to the same effect, for
example:

/* Modified behaviour: #error does not cause SWIG to exit with error */
#pragma SWIG cpperraswarn=1

/* Normal behaviour: #error does cause SWIG to exit with error */
#pragma SWIG cpperraswarn=0

11 SWIG library

e The %include directive and library search path
e C arrays and pointers
o cpointer.i
o carrays.i
o cmalloc.i
o cdata.i
e C string handling
o Default string handling
o Passing binary data
o Using %newobject to release memory
o cstring.i
e STL/C++ library
o std::string
o std:vector
o STL exceptions
o shared_ptr smart pointer
= shared_ptr basics
= shared_ptr and inheritance
= shared_ptr and method overloading
= shared_ptr and templates
= shared_ptr and directors
o auto_ptr smart pointer
o Utility Libraries
o exception.i

To help build extension modules, SWIG is packaged with a library of support files that you can include in your own interfaces. These files often define new SWIG directives or provide utility
functions that can be used to access parts of the standard C and C++ libraries. This chapter provides a reference to the current set of supported library files.

Compatibility note: Older versions of SWIG included a number of library files for manipulating pointers, arrays, and other structures. Most these files are now deprecated and have been
removed from the distribution. Alternative libraries provide similar functionality. Please read this chapter carefully if you used the old libraries.

11.1 The %include directive and library search path

Library files are included using the $include directive. When searching for files, directories are searched in the following order:

. The current directory

. Directories specified with the-I command line option

. ./swig_lib

. SWIG library install location as reported by swig -swiglib, for example /usr/local/share/swig/1.3.30
. On Windows, a directoryLib relative to the location ofswig.exe is also searched.

a s wNE

Within directories mentioned in points 3-5, SWIG first looks for a subdirectory corresponding to a target language (e.g., python, tcl, etc.). If found, SWIG will search the language specific
directory first. This allows for language-specific implementations of library files.

You can ignore the installed SWIG library by setting the SWIG_LIB environment variable. Set the environment variable to hold an alternative library directory.

The directories that are searched are displayed when using -verbose commandline option.
11.2 C arrays and pointers

This section describes library modules for manipulating low-level C arrays and pointers. The primary use of these modules is in supporting C declarations that manipulate bare pointers such as
int *,double *, orvoid *.The modules can be used to allocate memory, manufacture pointers, dereference memory, and wrap pointers as class-like objects. Since these functions
provide direct access to memory, their use is potentially unsafe and you should exercise caution.

11.2.1 cpointer.i

The cpointer. i module defines macros that can be used to used to generate wrappers around simple C pointers. The primary use of this module is in generating pointers to primitive
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datatypes such as int and double.
%pointer_functions(type, name)
Generates a collection of four functions for manipulating a pointer type *:
type *new_name()
Creates a new object of type type and returns a pointer to it. In C, the object is created using calloc (). In C++, new is used.
type *copy_name(type value)

Creates a new object of type type and returns a pointer to it. An initial value is set by copying it from value. In C, the object is created using calloc (). In C++,
new is used.

type *delete name(type *obj)
Deletes an object type type.
void name_assign(type *obj, type value)
Assigns *obj = value.
type name value(type *obj)
Returns the value of *obj.
When using this macro, type may be any type and name must be a legal identifier in the target language. name should not correspond to any other name used in the interface file.

Here is a simple example of using $pointer_functions():

%module example
%include "cpointer.i"

/* Create some functions for working with "int *" */
$pointer functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python:

>>> import example

>>> ¢ = example.new_intp() # Create an "int" for storing result
>>> example.add(3, 4, c) # Call function

>>> example.intp value(c) # Dereference

7

>>> example.delete_intp(c) # Delete

%pointer_class(type, name)

Wraps a pointer of type * inside a class-based interface. This interface is as follows:

struct name {

name () ; // Create pointer object
~name(); // Delete pointer object
void assign(type value); // Assign value
type value(); // Get value
type *cast(); // Cast the pointer to original type
static name *frompointer(type *); // Create class wrapper from existing
// pointer
}i

When using this macro, type is restricted to a simple type name like int, £loat, or Foo. Pointers and other complicated types are not allowed. name must be a valid identifier not
already in use. When a pointer is wrapped as a class, the "class" may be transparently passed to any function that expects the pointer.

If the target language does not support proxy classes, the use of this macro will produce the example same functions as ¢pointer_functions() macro.
It should be noted that the class interface does introduce a new object or wrap a pointer inside a special structure. Instead, the raw pointer is used directly.

Here is the same example using a class instead:

%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
$pointer class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python (using proxy classes)

>>> import example

>>> ¢ = example.intp() # Create an "int" for storing result
>>> example.add(3, 4, c) # Call function

>>> c.value() # Dereference

7

Of the two macros, spointer_class is probably the most convenient when working with simple pointers. This is because the pointers are access like objects and they can be easily
garbage collected (destruction of the pointer object destroys the underlying object).

%pointer_cast(typel, type2, name)

Creates a casting function that converts typel to type2 . The name of the function isname. For example:

10.9 Viewing preprocessor output



SWIG-4.0 Documentation

$pointer_cast(int *, unsigned int *, int_to_uint);

In this example, the function int_to_uint () would be used to cast types in the target language.
Note: None of these macros can be used to safely work with strings (char * orchar **).
Note: When working with simple pointers, typemaps can often be used to provide more seamless operation.
11.2.2 carrays.i

This module defines macros that assist in wrapping ordinary C pointers as arrays. The module does not provide any safety or an extra layer of wrapping--it merely provides functionality for
creating, destroying, and modifying the contents of raw C array data.

%array_functions(type, name)
Creates four functions.
type *new_name(int nelements)
Creates a new array of objects of type type. In C, the array is allocated using calloc(). In C++,new [] isused.
type *delete name(type *ary)
Deletes an array. In C, free() is used. In C++,delete [] is used.
type name_getitem(type *ary, int index)
Returns the value ary[index].
void name_setitem(type *ary, int index, type value)
Assigns ary[index] = value
When using this macro, type may be any type and name must be a legal identifier in the target language. name should not correspond to any other name used in the interface file.

Here is an example of $array_functions (). Suppose you had a function like this:

void print_array(double x[10]) {
int ij;
for (i = 0; i < 10; i++) {
printf("[%d] = %g\n", i, x[i]);
}

To wrap it, you might write this:

gmodule example

%include "carrays.i"
$array_functions(double, doubleArray);

void print_array(double x[10]);

Now, in a scripting language, you might write this:

a = new_doubleArray(10)

for i in range(0, 10):
doubleArray_setitem(a, i, 2 * i)

print_array(a)

delete_doubleArray(a)

# Create an array

# Set a value
# Pass to C
# Destroy array

%array_class(type, name)

Wraps a pointer of type * inside a class-based interface. This interface is as follows:

struct name {
name (int nelements);
~name();
type getitem(int index);
void setitem(int index, type value);
type *cast();
static name *frompointer(type *);

// Create an array

// Delete array

// Return item

// Set item

// Cast to original type

// Create class wrapper from
// existing pointer

When using this macro, type is restricted to a simple type name like int or £loat. Pointers and other complicated types are not allowed. name must be a valid identifier not already
in use. When a pointer is wrapped as a class, it can be transparently passed to any function that expects the pointer.

When combined with proxy classes, the sarray_class() macro can be especially useful. For example:

%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);

Allows you to do this:

import example
c = example.doubleArray(10) # Create double[10]
for i in range(0, 10):

c[i] = 2 * i # Assign values

10.9 Viewing preprocessor output
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# Pass to C

Note: These macros do not encapsulate C arrays inside a special data structure or proxy. There is no bounds checking or safety of any kind. If you want this, you should consider using a

special array object rather than a bare pointer.

Note: sarray_functions() and $array_class () should not be used with types of char orchar *. SWIG's default handling of these types is to handle them as character strings and

the two macros do not do enough to change this.

11.2.3 cmalloc.i

This module defines macros for wrapping the low-level C memory allocation functions malloc (), calloc(), realloc(), and free().

$malloc(type [, name=type])

Creates a wrapper around malloc () with the following prototype:

type *malloc_name(int nbytes

= sizeof(type));

If type is void, then the size parameternbytes is required. The name parameter only needs to be specified when wrapping a type that is not a valid identifier (e.g., " int *",

"double **", etc.).

%calloc(type [, name=type])

Creates a wrapper around calloc () with the following prototype:

type *calloc_name(int nobj =1, int sz = sizeof(type));

If type is void, then the size parametersz is required.

%realloc(type [, name=type])

Creates a wrapper around realloc () with the following prototype:

type *realloc_name(type *ptr, int nitems);

Note: unlike the C realloc (), the wrapper generated by this macro implicitly includes the size of the corresponding type. For example, realloc_int(p, 100) reallocates p so

that it holds 100 integers.

%free(type [, name=type])

Creates a wrapper around free () with the following prototype:

void free_ name(type *ptr);

%$sizeof (type [, name=type])

Creates the constant:

%constant int sizeof_name

sizeof (type);

%allocators(type [, name=type])

Generates wrappers for all five of the above operations.

Here is a simple example that illustrates the use of these macros:

// SWIG interface
gmodule example
%include "cmalloc.i"

gmalloc(int);
%free(int);

gmalloc(int *, intp);
%free(int *, intp);

%allocators(double);

Now, in a script:

>>> a = malloc_int()
>>> a -
'_000efa70_p_int'

>>> free int(a)

>>> b = malloc_intp()
>>> b
'_000efb20_p p int'
>>> free intp(b)

>>> ¢
'_000fab98 p double'

>>> free_double(c)

>>> print sizeof_double
8

>>>

>>> from example import *

>>> ¢ = calloc_double(50)

>>> ¢ = realloc_double(100000)

11.2.4 cdata.i

10.9 Viewing preprocessor output
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The cdata. i module defines functions for converting raw C data to and from strings in the target language. The primary applications of this module would be packing/unpacking of binary data
structures---for instance, if you needed to extract data from a buffer. The target language must support strings with embedded binary data in order for this to work.

const char *cdata(void *ptr, size_t nbytes)
Converts nbytes of data atptr into a string. ptr can be any pointer.

void memmove(void *ptr, const char *s)
Copies all of the string data in s into the memory pointed to by ptr. The string may contain embedded NULL bytes. This is actually a wrapper to the standard C library memmove
function, which is declared as void memmove(void *ptr, const void *src, size_t n).Thesrc and length n parameters are extracted from the language specific string s

in the underlying wrapper code.

One use of these functions is packing and unpacking data from memory. Here is a short example:

// SWIG interface
gmodule example
%include "carrays.i"
%include "cdata.i"

%sarray_class(int, intArray);

Python example:

>>> a = intArray(10)
>>> for i in range(0, 10):

a[i] = i
>>> b = cdata(a, 40)
>>> b

'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t"
>>> ¢ = intArray(10)

>>> memmove(c, b)

>>> print c[4]

Since the size of data is not always known, the following macro is also defined:
%cdata(type [, name=type])

Generates the following function for extracting C data for a given type.

char *cdata_name(type* ptr, int nitems)

nitems is the number of items of the given type to extract.

Note: These functions provide direct access to memory and can be used to overwrite data. Clearly they are unsafe.
11.3 C string handling

A common problem when working with C programs is dealing with functions that manipulate raw character data using char *. In part, problems arise because there are different
interpretations of char *---it could be a NULL-terminated string or it could point to binary data. Moreover, functions that manipulate raw strings may mutate data, perform implicit memory
allocations, or utilize fixed-sized buffers.

The problems (and perils) of using char * are well-known. However, SWIG is not in the business of enforcing morality. The modules in this section provide basic functionality for manipulating
raw C strings.

11.3.1 Default string handling

Suppose you have a C function with this prototype:

char *foo(char *s);

The default wrapping behavior for this function is to set s to a raw char * that refers to the internal string data in the target language. In other words, if you were using a language like Tcl, and
you wrote this,

% foo Hello

then s would point to the representation of "Hello" inside the Tcl interpreter. When returning a char *, SWIG assumes that it is a NULL-terminated string and makes a copy of it. This gives
the target language its own copy of the result.

There are obvious problems with the default behavior. First, since a char * argument points to data inside the target language, it is NOT safe for a function to modify this data (doing so may
corrupt the interpreter and lead to a crash). Furthermore, the default behavior does not work well with binary data. Instead, strings are assumed to be NULL-terminated.

11.3.2 Passing binary data

If you have a function that expects binary data,

size_t parity(char *str, size_t len, size_t initial);

you can wrap the parameters (char *str, size_t len) as asingle argument using a typemap. Just do this:

%apply (char *STRING, size_t LENGTH) { (char *str, size t len) };

size_t parity(char *str, size_t len, size_t initial);

Now, in the target language, you can use binary string data like this:

11.3 C string handling
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>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s, 0)

In the wrapper function, the passed string will be expanded to a pointer and length parameter. The (char *STRING, int LENGTH) multi-argument typemap is also available in addition to
(char *STRING, size_ t LENGTH).

11.3.3 Using %newobject to release memory

If you have a function that allocates memory like this,

char *foo() {
char *result = (char *) malloc(...);
return result;

}

then the SWIG generated wrappers will have a memory leak--the returned data will be copied into a string object and the old contents ignored.

To fix the memory leak, use the $newobject directive.

%newobject foo;

char *foo();

This will release the result if the appropriate target language support is available. SWIG provides the appropriate "newfree" typemap for char * so that the memory is released, however, you
may need to provide your own "newfree" typemap for other types. See Object ownership and %newobject for more details.

11.3.4 cstring.i

The cstring. i library file provides a collection of macros for dealing with functions that either mutate string arguments or which try to output string data through their arguments. An example
of such a function might be this rather questionable implementation:

void get_path(char *s) {
// Potential buffer overflow---uh, oh.
sprintf(s, "%s/%s", base_directory, sub_directory);

}

// Somewhere else in the C program

{
char path[1024];
get_path(path);

(Off topic rant: If your program really has functions like this, you would be well-advised to replace them with safer alternatives involving bounds checking).
The macros defined in this module all expand to various combinations of typemaps. Therefore, the same pattern matching rules and ideas apply.
%cstring_bounded_output(parm, maxsize)

Turns parameter parm into an output value. The output string is assumed to be NULL-terminated and smaller than maxsize characters. Here is an example:

%cstring_bounded output(char *path, 1024);

void get_path(char *path);

In the target language:

>>> get_path()
/home/beazley/packages/Foo/Bar
>>>

Internally, the wrapper function allocates a small buffer (on the stack) of the requested size and passes it as the pointer value. Data stored in the buffer is then returned as a function
return value. If the function already returns a value, then the return value and the output string are returned together (multiple return values). If more than maxsize bytes are written,
your program will crash with a buffer overflow!

%cstring_chunk_output(parm, chunksize)

Turns parameter parm into an output value. The output string is always chunksize and may contain binary data. Here is an example:

%$cstring_chunk output(char *packet, PACKETSIZE);

void get_packet(char *packet);

In the target language:

>>> get_packet()
'\xa9Y:\xf6\xd7\xel\x87\xdbH; y\x97\x7£\xd3\x99\x14V\xec\x06\xea\xa2\x88"
>>>

This macro is essentially identical to $cstring_bounded_output . The only difference is that the result is alwayschunksize characters. Furthermore, the result can contain
binary data. If more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_bounded_mutable(parm, maxsize)

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated and smaller than maxsize characters. The output string is also assumed
to be NULL-terminated and less than maxsize characters.
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%cstring_bounded mutable(char *ustr, 1024);

void make_upper(char *ustr);

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'
>>>

Internally, this macro is almost exactly the same as $cstring_bounded_output. The only difference is that the parameter accepts an input value that is used to initialize the
internal buffer. It is important to emphasize that this function does not mutate the string value passed---instead it makes a copy of the input value, mutates it, and returns it as a result.
If more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_mutable(parm [, expansion])

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated. An optional parameter expansion specifies the number of extra
characters by which the string might grow when it is modified. The output string is assumed to be NULL-terminated and less than the size of the input string plus any expansion

characters.

%cstring_mutable(char *ustr);

void make_upper(char *ustr);

$cstring_mutable(char *hstr, HEADER_SIZE);

void attach_header(char *hstr);

In the target language:

>>> make_upper ("hello world")
'HELLO WORLD'

>>> attach_header("Hello world")
‘header: Hello world'

>>>

This macro differs from $cstring_bounded mutable() in that a buffer is dynamically allocated (on the heap using malloc/new ). This buffer is always large enough to store a
copy of the input value plus any expansion bytes that might have been requested. It is important to emphasize that this function does not directly mutate the string value passed---
instead it makes a copy of the input value, mutates it, and returns it as a result. If the function expands the result by more than expansion extra bytes, then the program will

crash with a buffer overflow!
%cstring_output_maxsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a maximum length parameter are provided. As input, a user simply supplies the maximum
length. The return value is assumed to be a NULL-terminated string.

%cstring_output_maxsize(char *path, int maxpath);

void get_path(char *path, int maxpath);

In the target language:

>>> get path(1024)
' /home/beazley/Packages/Foo/Bar’
>>>

This macro provides a safer alternative for functions that need to write string data into a buffer. User supplied buffer size is used to dynamically allocate memory on heap. Results are
placed into that buffer and returned as a string object.
%cstring_output_withsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a pointer int * are passed. Initially, the int * parameter points to a value containing
the maximum size. On return, this value is assumed to contain the actual number of bytes. As input, a user simply supplies the maximum length. The output value is a string that may
contain binary data.

%$cstring_output_withsize(char *data, int *maxdata);

void get_data(char *data, int *maxdata);

In the target language:

>>> get_data(1024)
'x627388912"

>>> get_data(1024)
'xXyzzy'

>>>

This macro is a somewhat more powerful version of $cstring_output_chunk (). Memory is dynamically allocated and can be arbitrary large. Furthermore, a function can control
how much data is actually returned by changing the value of the maxparm argument.

%cstring_output_allocate(parm, release)

This macro is used to return strings that are allocated within the program and returned in a parameter of type char **. For example:

void foo(char **s) {
*s = (char *) malloc(64);
sprintf(*s, "Hello world\n");

}
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The returned string is assumed to be NULL-terminated. release specifies how the allocated memory is to be released (if applicable). Here is an example:

$cstring_output_allocate(char **s, free(*$l));

void foo(char **s);

In the target language:

>>> foo()
'Hello world\n'
>>>

%cstring_output_allocate_size(parm, szparm, release)

This macro is used to return strings that are allocated within the program and returned in two parameters of type char ** and int *. For example:

void foo(char **s, int *sz) {
*s = (char *) malloc(64);
*sz = 64;
// Write some binary data

The returned string may contain binary data. release specifies how the allocated memory is to be released (if applicable). Here is an example:

%cstring_output_allocate_size(char **s, int *slen, free(*$1));

void foo(char **s, int *slen);

In the target language:

>>> foo()
'\xa9Y:\x£6\xd7\xel\x87\xdbH; y\x97\x7£\xd3\x99\x14V\xec\x06\xea\xa2\x88"'
>>>

This is the safest and most reliable way to return binary string data in SWIG. If you have functions that conform to another prototype, you might consider wrapping them with a helper
function. For example, if you had this:

char *get_data(int *len);

You could wrap it with a function like this:

void my_get_data(char **result, int *len) {
*result = get_data(len);

}

Comments:

¢ Support for the cstring. i module depends on the target language. Not all SWIG modules currently support this library.

¢ Reliable handling of raw C strings is a delicate topic. There are many ways to accomplish this in SWIG. This library provides support for a few common techniques.
o If used in C++, this library usesnew and delete [ ] for memory allocation. If using C, the library uses malloc () and free().

¢ Rather than manipulating char * directly, you might consider using a special string structure or class instead.

11.4 STLIC++ library

The library modules in this section provide access to parts of the standard C++ library including the STL. SWIG support for the STL is an ongoing effort. Support is quite comprehensive for
some language modules but some of the lesser used modules do not have quite as much library code written.

The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.

C++ class C++ Library file 'SWIG Interface library
file

std::array (C++11) array std_array.i

std::auto_ptr memory std_auto_ptr.i

std::complex complex std_complex.i

std::deque deque std_deque.i

std::list list std_list.i

std::map map std_map.i

std::multimap (C++11) multimap std_multimap.i

std::multiset (C++11) multiset std_multiset.i

std::pair utility std_pair.i

std::set set std_set.i

std::string string std_string.i

std::unordered_map (C++11) unordered_map std_unordered_map.i

std::unordered_multimap (C++11)|lunordered_multimap|std_unordered_multimap.i

std::unordered_multiset (C++11) (lunordered_multiset ||std_unordered_multiset.i

std::unordered_set (C++11) unordered_set std_unordered_set.i

std::vector vector std_vector.i

std::wstring wstring std_wstring.i

std::shared_ptr (C++11) shared_ptr std_shared_ptr.i

The list is by no means complete; some language modules support a subset of the above and some support additional STL classes. Please look for the library files in the appropriate language
library directory.
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11.4.1 std::string

The std_string.1i library provides typemaps for converting C++ std: : string objects to and from strings in the target scripting language. For example:

gmodule example
%$include "std string.i"

std::string foo();
void bar(const std::string &x);

In the target language:

x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string

A common problem that people encounter is that of classes/structures containing a std: : string. This can be overcome by defining a typemap. For example:

%module example
%$include "std_string.i"

%apply const std::string& {std::string* foo};

struct my_struct
{

std::string foo;
}i

In the target language:

X = my_struct();
x.foo = "Hello World"; # assign with string
print x.foo; # print as string

This module only supports types std: :string and const std::string &. Pointers and non-const references are left unmodified and returned as SWIG pointers.

This library file is fully aware of C++ namespaces. If you export std: : string or rename it with a typedef, make sure you include those declarations in your interface. For example:

%module example
%$include "std_string.i"

using namespace std;
typedef std::string String;

void foo(string s, const String &t); // std_string typemaps still applied

11.4.2 std::vector

The std_vector. i library provides support for the C++std: : vector class in the STL. Using this library involves the use of the $template directive. All you need to do is to instantiate

different versions of vector for the types that you want to use. For example:

%module example
%$include "std_vector.i"

namespace std {
%template(vectori) vector<int>;
%template(vectord) vector<double>;

}i

When a template vector<x> is instantiated a number of things happen:

target language.

An output typemap is defined forvector<x>. In this case, the values in the vector are expanded into a list object in the target language.

For all other variations of the type, the wrappers expect to receive a vector<x> * object in the usual manner.

An exception handler for std: :out_of_range is defined.

Optionally, special methods for indexing, item retrieval, slicing, and element assignment may be defined. This depends on the target language.

To illustrate the use of this library, consider the following functions:

A class that exposes the C++ APl is created in the target language . This can be used to create objects, invoke methods, etc. This class is currently a subset of the real STL vector class.
Input typemaps are defined forvector<xX>, const vector<X> &, and const vector<X> *. For each of these, a pointer vector<x> * may be passed or a native list object in the

/* File : example.h */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

double average(std::vector<int> v) {
return std::accumulate(v.begin(), v.end(), 0.0)/v.size();

}

std::vector<double> half(const std::vector<double>& v) {
std::vector<double> w(V);
for (unsigned int i=0; i<w.size(); i++)
w[i] /= 2.0;
return w;

}

void halve_in_place(std::vector<double>& v) {
for (std::vector<double>::iterator it = v.begin(); it != v.end(); ++it)
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*it /= 2.0;

To wrap with SWIG, you might write the following:

%module example

3{

#include "example.h"
%}

%$include "std vector.i"
// Instantiate templates used by example
namespace std {
%template(IntVector) vector<int>;
%template(DoubleVector) vector<double>;

}

// Include the header file with above prototypes
%include "example.h"

Now, to illustrate the behavior in the scripting interpreter, consider this Python example:

>>> from example import *

>>> iv = IntVector(4) # Create an vector<int>
>>> for i in range(0, 4):

000 ivpi] = i

>>> average(iv) # Call method

1L515)

>>> average([0, 1, 2, 3]) # Call with list

1.5

>>> half([1l, 2, 3]) # Half a list

(0.5, 1.0, 1.5)
>>> halve in place([1l, 2, 3]) # Oops
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p std_vectorTdouble t
>>> dv = DoubleVector(4)
>>> for i in range(0, 4):

600 dv[i] = i

>>> halve_ in place(dv) # Ok
>>> for i in dv:

000 print i

0.0

0.5

1.0

1ols

>>> dv[20] = 4.5
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "example.py", line 81, in _ setitem _
def _ setitem (*args): return apply(examplec.DoubleVector  setitem , args)
IndexError: vector index out of range
>>>

This library module is fully aware of C++ namespaces. If you use vectors with other names, make sure you include the appropriate using or typedef directives. For example:

%$include "std vector.i"
namespace std {
$template(IntVector) vector<int>;

}

using namespace std;
typedef std::vector Vector;

void foo(vector<int> *x, const Vector &x);

Note: This module makes use of several advanced SWIG features including templatized typemaps and template partial specialization. If you are trying to wrap other C++ code with templates,
you might look at the code contained in std_vector. i. Alternatively, you can show them the code if you want to make their head explode.

Note: This module is defined for all SWIG target languages. However argument conversion details and the public APl exposed to the interpreter vary.
11.4.3 STL exceptions
Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception should the values not be valid. The classic example is array bounds checking.

The library wrappers are written to throw a C++ exception in the case of error. The C++ exception in turn gets converted into an appropriate error/exception for the target language. By and
large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate “throws" typemaps. For example:

gmodule example

%$include "std_vector.i"

%typemap(throws) std::out_of_ range {
// custom exception handler

}

%template(VectInt) std::vector<int>;

The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target language.

When using the STL it is advisable to add in an exception handler to catch all STL exceptions. The $exception directive can be used by placing the following code before any other methods
or libraries to be wrapped:

%include "exception.i"
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%exception {
try {
Saction
} catch (const std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what());
}

Any thrown STL exceptions will then be gracefully handled instead of causing a crash.
11.4.4 shared_ptr smart pointer
11.4.4.1 shared_ptr basics

Some target languages have support for handling the shared_ptr reference counted smart pointer. This smart pointer is available in the standard C++11 library as std: : shared_ptr. It was
alsoin TR1 as std: :trl::shared ptr before it was fully standardized. Support for the widely used boost: : shared_ptr is also available.

In order to use std: :shared ptr, thestd_shared_ptr. i library file should be included:

%$include <std_shared ptr.i>

The pre-standard std: :trl::shared_ptr can be used by including the following macro before including the std_shared_ptr. i library file:

#define SWIG_SHARED PTR_SUBNAMESPACE trl
%$include <std_shared ptr.i>

In order to use boost : :shared_ptr, theboost_shared_ptr. i library file should be included:

%$include <boost_shared ptr.i>

You can only use one of these variants of shared_ptr in your interface file at a time. and all three variants must be used in conjunction with the $shared_ptr(T) macro, where T is the
underlying pointer type equating to usage shared_ptr<T>. The type T must be non-primitive. A simple example demonstrates usage:

gmodule example
%$include <boost_shared ptr.i>
%shared_ptr(IntValue)

%inline %{
#include <boost/shared_ptr.hpp>

struct IntvValue {

int value;

IntValue(int v) : value(v) {}
}i

static int extractValue(const IntValue &t) {
return t.value;

}

static int extractValueSmart(boost::shared ptr<Intvalue> t) {
return t->value;

}

%}

Note that the $shared_ptr(Intvalue) declaration occurs after the inclusion of the boost_shared_ptr. i library which provides the macro and, very importantly, before any usage or
declaration of the type, IntValue. The $shared_ptr macro provides, a few things for handling this smart pointer, but mostly a number of typemaps. These typemaps override the default
typemaps so that the underlying proxy class is stored and passed around as a pointer to a shared_ptr instead of a plain pointer to the underlying type. This approach means that any
instantiation of the type can be passed to methods taking the type by value, reference, pointer or as a smart pointer. The interested reader might want to look at the generated code, however,
usage is simple and no different handling is required from the target language. For example, a simple use case of the above code from Java would be:

IntValue iv = new IntValue(1234);

int vall = example.extractValue(iv);

int val2 = example.extractValueSmart(iv);
System.out.println(vall + " " + val2);

11.4.4.2 shared_ptr and inheritance

The shared_ptr library works quite differently to SWIG's normal, but somewhat limited, smart pointer handling. The shared_ptr library does not generate extra wrappers, just for smart pointer
handling, in addition to the proxy class. The normal proxy class including inheritance relationships is generated as usual. The only real change introduced by the $shared_ptr macro is that
the proxy class stores a pointer to the shared_ptr instance instead of a raw pointer to the instance. A proxy class derived from a base which is being wrapped with shared_ptr can and must be
wrapped as a shared_ptr too. In other words all classes in an inheritance hierarchy must all be used with the $shared_ptr macro. For example the following code can be used with the base
class shown earlier:

$shared_ptr(DerivedIntValue)

%inline %{

struct DerivedIntValue : IntValue {
DerivedIntValue(int value) : IntValue(value) {}

}i
%}

A shared_ptr of the derived class can now be passed to a method where the base is expected in the target language, just as it can in C++:

DerivedIntValue div = new DerivedIntValue(5678);
int val3 = example.extractValue(div);
int val4 = example.extractValueSmart(div);

If the $shared_ptr macro is omitted for any class in the inheritance hierarchy, SWIG will warn about this and the generated code may or may not result in a C++ compilation error. For
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example, the following input:

%$include "boost_shared ptr.i"
$shared_ptr(Parent);

%inline %{
#include <boost/shared ptr.hpp>
struct GrandParent {
virtual ~GrandParent() {}
Yi

struct Parent : GrandParent {
virtual ~Parent() {}
Yi

struct Child : Parent {
virtual ~Child() {}
bi
%}

warns about the missing smart pointer information:

example.i:12: Warning 520: Base class 'GrandParent' of 'Parent' is not similarly marked as a smart pointer.
example.i:16: Warning 520: Derived class 'Child' of 'Parent' is not similarly marked as a smart pointer.

Adding the missing $shared_ptr macros will fix this:

%$include <boost_shared ptr.i>
%$shared_ptr(GrandParent);
%shared ptr(Parent);
$shared_ptr(Child);

... as before

11.4.4.3 shared_ptr and method overloading

A C++ compiler can disambiguate a method overloaded by a shared_ptr and one using the raw underlying type. For example, either one of these methods can be called in C++:

int age(std::shared ptr<GrandParent> num);
int age(GrandParent& num);

When wrapped by SWIG, disambiguation is not possible using the overloaded names as there is just one equivalent type (GrandParent ) in the target language. SWIG will choose to wrap
just the first method by default. Ambiguity in overloading discusses ways to control which method(s) gets wrapped using $ignore or $rename. For the interested reader, SWIG detects that
they are equivalent types via the typecheck typemaps in the shared_ptr library.

11.4.4.4 shared_ptr and templates

The $shared_ptr macro should be used for all the required instantiations of the template before each of the $template instantiations. For example, consider number . h containing the
following illustrative template:

#include <memory>

template<int N> struct Number {

int num;

Number() : num(N) {}

static std::shared_ptr<Number<N>> make() { return std::make_ shared<Number<N>>(); }
}i

The SWIG code below shows the required ordering:

%$include <std_shared_ptr.i>

$shared_ptr(Number<10>);
%$shared_ptr(Number<42>);

%{

#include "number.h"
%}
%include "number.h"

%template(Number10) Number<10>;
%template(Number42) Number<42>;

11.4.4.5 shared_ptr and directors
The languages that support shared_ptr also have support for using shared_ptr with directors.
11.4.5 auto_ptr smart pointer

While std: :auto_ptr is deprecated in C++11, some existing code may still be using it, so SWIG provides limited support for this class: std_auto_ptr. i defines the typemaps which apply
to the functions returning objects of this type. Any other use of std_auto_ptr. i is not directly supported.

A typical example of use would be

%include <std_ auto_ptr.i>

%auto_ptr(Klass)
%inline %{

class Klass {
public:
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// Factory function creating objects of this class:
static std::auto_ptr<Klass> Create(int value) {
return std::auto_ptr<Klass>(new Klass(value));

}
int getvalue() const { return m value; }

private:
DerivedIntValue(int value) : m value(value) {}
int m_value;
}i
%}

The returned objects can be used naturally from the target language, e.g. from C#:

Klass k = Klass.Create(17);
int value = k.getValue();

11.5 Utility Libraries

11.5.1 exception.i

The exception. i library provides a language-independent function for raising a run-time exception in the target language. This library is largely used by the SWIG library writers. If possible,
use the error handling scheme available to your target language as there is greater flexibility in what errors/exceptions can be thrown.

SWIG_exception(int code, const char *message)

Raises an exception in the target language. code is one of the following symbolic constants:

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError

message is a string indicating more information about the problem.

The primary use of this module is in writing language-independent exception handlers. For example:

%include "exception.i"
%exception std::vector::getitem {
try {
Saction
} catch (std::out_of range& e) {
SWIG_exception(SWIG_IndexError, const_cast<char*>(e.what()));

}

12 Argument Handling

e The typemaps.i library
o Introduction
o Input parameters
o Output parameters
° Input/Output parameters
o Using different names
e Applying constraints to input values
o Simple constraint example
o Constraint methods
o Applying constraints to new datatypes

In Chapter 5, SWIG's treatment of basic datatypes and pointers was described. In particular, primitive types such as int and double are mapped to corresponding types in the target
language. For everything else, pointers are used to refer to structures, classes, arrays, and other user-defined datatypes. However, in certain applications it is desirable to change SWIG's
handling of a specific datatype. For example, you might want to return multiple values through the arguments of a function. This chapter describes some of the techniques for doing this.

12.1 The typemaps.i library

This section describes the typemaps. i library file--commonly used to change certain properties of argument conversion.
12.1.1 Introduction

Suppose you had a C function like this:

void add(double a, double b, double *result) {
*result = a + b;

From reading the source code, it is clear that the function is storing a value in the double *result parameter. However, since SWIG does not examine function bodies, it has no way to
know that this is the underlying behavior.

One way to deal with this is to use the typemaps. i library file and write interface code like this:

// Simple example using typemaps
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gmodule example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %{

extern void add(double a, double b, double *result);
%}

The %apply directive tells SWIG that you are going to apply a special type handling rule to a type. The "double *OUTPUT" specification is the name of a rule that defines how to return an

output value from an argument of type double *. This rule gets applied to all of the datatypes listed in curly braces-- in this case " double *result".

When the resulting module is created, you can now use the function like this (shown for Python):

>>> a = add(3, 4)
>>> print a

7

>>>

In this case, you can see how the output value normally returned in the third argument has magically been transformed into a function return value. Clearly this makes the function much easier

to use since it is no longer necessary to manufacture a special double * object and pass it to the function somehow.

Once a typemap has been applied to a type, it stays in effect for all future occurrences of the type and name. For example, you could write the following:

gmodule example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %{

extern void add(double a, double
extern void sub(double a, double double *result);
extern void mul(double a, double b, double *result);
extern void div(double a, double b, double *result);
%)

double *result);

o oo

In this case, the double *OUTPUT rule is applied to all of the functions that follow.

Typemap transformations can even be extended to multiple return values. For example, consider this code:

%include "typemaps.i"
%apply int *OUTPUT { int *width, int *height };

// Returns a pair (width, height)
void getwinsize(int winid, int *width, int *height);

In this case, the function returns multiple values, allowing it to be used like this:

>>> w, h = genwinsize(wid)
>>> print w

400

>>> print h

300

>>>

It should also be noted that although the $apply directive is used to associate typemap rules to datatypes, you can also use the rule names directly in arguments. For example, you could

write this:

// Simple example using typemaps
%module example
%include "typemaps.i"

%4
extern void add(double a, double b, double *OUTPUT);
%}
extern void add(double a, double b, double *OUTPUT);

Typemaps stay in effect until they are explicitly deleted or redefined to something else. To clear a typemap, the $clear directive should be used. For example:

%clear double *result; // Remove all typemaps for double *result

12.1.2 Input parameters

The following typemaps instruct SWIG that a pointer really only holds a single input value:

int *INPUT

short *INPUT

long *INPUT

unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT

float *INPUT

When used, it allows values to be passed instead of pointers. For example, consider this function:

double add(double *a, double *b) {
return *a+*b;
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Now, consider this SWIG interface:

gmodule example

%include "typemaps.i"

3{

extern double add(double *, double *);

%}

extern double add(double *INPUT, double *INPUT);

When the function is used in the scripting language interpreter, it will work like this:

result = add(3, 4)

12.1.3 Output parameters

The following typemap rules tell SWIG that pointer is the output value of a function. When used, you do not need to supply the argument when calling the function. Instead, one or more output
values are returned.

int *OUTPUT

short *QUTPUT

long *OQUTPUT

unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT

float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C function :

void add(double a, double b, double *c) {
*c = a+tb;

}

A SWIG interface file might look like this :

%module example

%include "typemaps.i"

%inline %{

extern void add(double a, double b, double *OUTPUT);
%}

In this case, only a single output value is returned, but this is not a restriction. An arbitrary number of output values can be returned by applying the output rules to more than one argument (as
shown previously).

If the function also returns a value, it is returned along with the argument. For example, if you had this:

extern int foo(double a, double b, double *OUTPUT);

The function will return two values like this:

iresult, dresult = foo(3.5, 2)

12.1.4 Input/Output parameters

When a pointer serves as both an input and output value you can use the following typemaps :

int *INOUT

short *INOUT

long *INOUT

unsigned int *INOUT
unsigned short *INOUT
unsigned long *INOUT
double *INOUT

float *INOUT

A C function that uses this might be something like this:

void negate(double *x) {
*X = -(*x);

}

To make x function as both and input and output value, declare the function like this in an interface file :

%module example
%include "typemaps.i"
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3{

extern void negate(double *);

%}

extern void negate(double *INOUT);

Now within a script, you can simply call the function normally :

a = negate(3); # a = -3 after calling this

One subtle point of the INOUT rule is that many scripting languages enforce mutability constraints on primitive objects (meaning that simple objects like integers and strings aren't supposed to
change). Because of this, you can't just modify the object's value in place as the underlying C function does in this example. Therefore, the INOUT rule returns the modified value as a new
object rather than directly overwriting the value of the original input object.

Compatibility note : The INOUT rule used to be known as BOTH in earlier versions of SWIG. Backwards compatibility is preserved, but deprecated.
12.1.5 Using different names

As previously shown, the $apply directive can be used to apply the INPUT, OUTPUT, and INOUT typemaps to different argument names. For example:

// Make double *result an output value
%apply double *OUTPUT { double *result };

// Make Int32 *in an input value
%apply int *INPUT { Int32 *in };

// Make long *x inout
%apply long *INOUT {long *x};

To clear arule, the 3clear directive is used:

%clear double *result;
%clear Int32 *in, long *x;

Typemap declarations are lexically scoped so a typemap takes effect from the point of definition to the end of the file or a matching $clear declaration.

12.2 Applying constraints to input values

In addition to changing the handling of various input values, it is also possible to use typemaps to apply constraints. For example, maybe you want to insure that a value is positive, or that a
pointer is non-NULL. This can be accomplished including the constraints. i library file.

12.2.1 Simple constraint example

The constraints library is best illustrated by the following interface file :

// Interface file with constraints
%module example
%include "constraints.i"

double exp(double x);

double log(double POSITIVE); // Allow only positive values
double sqgrt(double NONNEGATIVE); // Non-negative values only
double inv(double NONZERO); // Non-zero values

void free(void *NONNULL); // Non-NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the constraint condition, a scripting language exception will be raised. As a result, it is possible to catch
bad values, prevent mysterious program crashes and so on.

12.2.2 Constraint methods

The following constraints are currently available

POSITIVE Any number > 0 (not zero)
NEGATIVE Any number < 0 (not zero)
NONNEGATIVE Any number >= 0

NONPOSITIVE Any number <= 0

NONZERO Nonzero number

NONNULL Non-NULL pointer (pointers only).

12.2.3 Applying constraints to new datatypes

The constraints library only supports the primitive C datatypes, but it is easy to apply it to new datatypes using $apply. For example :

// RApply a constraint to a Real variable
%apply Number POSITIVE { Real in };

// Apply a constraint to a pointer type
%apply Pointer NONNULL { Vector * };

The special types of "Number" and "Pointer" can be applied to any numeric and pointer variable type respectively. To later remove a constraint, the $clear directive can be used :

%clear Real inj;
%clear Vector *;

12.2 Applying constraints to input values
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13.1 Introduction

Chances are, you are reading this chapter for one of two reasons; you either want to customize SWIG's behavior or you overheard someone mumbling some incomprehensible drivel about

“typemaps" and you asked yourself "typemaps, what are those?" That said, let's start with a short disclaimer that "typemaps" are an advanced customization feature that provide direct access

to SWIG's low-level code generator. Not only that, they are an integral part of the SWIG C++ type system (a non-trivial topic of its own). Typemaps are generally not a required part of using
SWIG. Therefore, you might want to re-read the earlier chapters if you have found your way to this chapter with only a vague idea of what SWIG already does by default.

13.1.1 Type conversion

One of the most important problems in wrapper code generation is the conversion or marshalling of datatypes between programming languages. Specifically, for every C/C++ declaration,

SWIG must somehow generate wrapper code that allows values to be passed back and forth between languages. Since every programming language represents data differently, this is not a

simple of matter of simply linking code together with the C linker. Instead, SWIG has to know something about how data is represented in each language and how it can be manipulated.

To illustrate, suppose you had a simple C function like this:

int factorial(int n);

To access this function from Python, a pair of Python API functions are used to convert integer values. For example:

long PyInt_ AsLong(PyObject *obj); /* Python --> C */
PyObject *PyInt_ FromLong(long Xx); /* C --> Python */

The first function is used to convert the input argument from a Python integer object to C 1long. The second function is used to convert a value from C back into a Python integer object.

Inside the wrapper function, you might see these functions used like this:

13.1 Introduction



SWIG-4.0 Documentation

PyObject *wrap factorial(PyObject *self, PyObject *args) {
int argl;
int result;
PyObject *objl;
PyObject *resultobj;

if (!PyArg_ParseTuple("O:factorial", &objl)) return NULL;
argl = PyInt_AsLong(objl);

result = factorial(argl);

resultobj = PyInt_FromLong(result);

return resultobj;

Every target language supported by SWIG has functions that work in a similar manner. For example, in Perl, the following functions are used:

IV SvIV(SV *sv); /* Perl --> C */
void sv_setiv(SV *sv, IV val); /* C -=> Perl */

In Tcl:

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl Obj *obj, long *value);
Tcl Obj *Tcl_NewIntObj(long value);

The precise details are not so important. What is important is that all of the underlying type conversion is handled by collections of utility functions and short bits of C code like this---you simply
have to read the extension documentation for your favorite language to know how it works (an exercise left to the reader).

13.1.2 Typemaps

Since type handling is so central to wrapper code generation, SWIG allows it to be completely defined (or redefined) by the user. To do this, a special $typemap directive is used. For example:

/* Convert from Python --> C */
%typemap(in) int {

$1 = PyInt AsLong($input);
}

/* Convert from C --> Python */
%typemap(out) int {

$result = PyInt_FromLong($1l);
}

At first glance, this code will look a little confusing. However, there is really not much to it. The first typemap (the "in" typemap) is used to convert a value from the target language to C. The
second typemap (the "out" typemap) is used to convert in the other direction. The content of each typemap is a small fragment of code that is inserted directly into the SWIG generated
wrapper functions. The code is usually C or C++ code which will be generated into the C/C++ wrapper functions. Note that this isn't always the case as some target language modules allow
target language code within the typemaps which gets generated into target language specific files. Within this code, a number of special variables prefixed with a $ are expanded. These are
really just placeholders for C/C++ variables that are generated in the course of creating the wrapper function. In this case, $input refers to an input object that needs to be converted to C/C++
and Sresult refers to an object that is going to be returned by a wrapper function. $1 refers to a C/C++ variable that has the same type as specified in the typemap declaration (an int in this
example).

A short example might make this a little more clear. If you were wrapping a function like this:

int ged(int x, int y);

A wrapper function would look approximately like this:

PyObject *wrap_gcd(PyObject *self, PyObject *args) {
int argl;
int arg2;
int result;
PyObject *objl;
PyObject *obj2;
PyObject *resultobj;

if (!PyArg_ParseTuple("0OO:gcd", &objl, &obj2)) return NULL;

/* "in" typemap, argument 1 */
{

argl = PyInt_AsLong(objl);
}

/* "in" typemap, argument 2 */

¢ arg2 = PyInt_AsLong(obj2);

}

result = gcd(argl, arg2);

/* "out" typemap, return value */

¢ resultobj = PyInt_FromLong(result);
}

return resultobj;

In this code, you can see how the typemap code has been inserted into the function. You can also see how the special $ variables have been expanded to match certain variable names inside
the wrapper function. This is really the whole idea behind typemaps--they simply let you insert arbitrary code into different parts of the generated wrapper functions. Because arbitrary code can
be inserted, it possible to completely change the way in which values are converted.

13.1.3 Pattern matching

As the name implies, the purpose of a typemap is to "map" C datatypes to types in the target language. Once a typemap is defined for a C datatype, it is applied to all future occurrences of
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that type in the input file. For example:

/* Convert from Perl --> C */
%typemap(in) int {

$1 = SvIV($input);
}

int factorial(int n);
int ged(int x, int y);
int count(char *s, char *t, int max);

The matching of typemaps to C datatypes is more than a simple textual match. In fact, typemaps are fully built into the underlying type system. Therefore, typemaps are unaffected by
typedef, namespaces, and other declarations that might hide the underlying type. For example, you could have code like this:

/* Convert from Ruby--> C */
%typemap(in) int {

$1 = NUM2INT($input);
}
typedef int Integer;
namespace foo {

typedef Integer Number;
Yi

int foo(int x);
int bar(Integer y);
int spam(foo::Number a, foo::Number b);

In this case, the typemap is still applied to the proper arguments even though typenames don't always match the text “int". This ability to track types is a critical part of SWIG--in fact, all of the
target language modules work merely define a family of typemaps for the basic types. Yet, it is never necessary to write new typemaps for typenames introduced by typedef.

In addition to tracking typenames, typemaps may also be specialized to match against a specific argument name. For example, you could write a typemap like this:

%typemap(in) double nonnegative {
$1 = PyFloat_AsDouble($input);
if ($1 < 0) |
PyErr_SetString(PyExc_ValueError, "argument must be nonnegative.");
SWIG fail;
}

double sin(double x);
double cos(double x);
double sqrt(double nonnegative);

typedef double Real;
double log(Real nonnegative);

Fol

certain tasks such as input argument conversion, typemaps can be defined for sequences of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
$1 = PyString_ AsString($input); /* char *str */
$2 = PyString_Size(S$input); /* int len */
}

int count(char *str, int len, char c);

In this case, a single input object is expanded into a pair of C arguments. This example also provides a hint to the unusual variable naming scheme involving $1, $2, and so forth.

13.1.4 Reusing typemaps

Typemaps are normally defined for specific type and argument name patterns. However, typemaps can also be copied and reused. One way to do this is to use assignment like this:

%typemap(in) Integer = int;
%typemap(in) (char *buffer, int size) = (char *str, int len);

There is a more powerful way to copy a family of typemaps though. Consider the following family of two typemap methods, "in" and “out" for type int:

%typemap(in) int {
/* Convert an integer argument */

}
%typemap(out) int {
/* Return an integer value */

Each of the two typemap methods could be copied individually for type size_t as follows:

/* Apply all of the int typemaps to size_t */
$typemap(in) size_t = int;
$typemap(out) size_t = int;

A more powerful form of copying is available from the $apply directive. The code below is identical to the above:

/* Apply all of the int typemaps to size_t */
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%apply int { size t };

%apply merely takes all of the typemaps that are defined for one type and applies them to other types. Note: you can include a comma separated set of typesinthe { ... } partof %apply.

It should be noted that it is not necessary to copy typemaps for types that are related by typede£. For example, if you have this,

typedef int size_t;

then SWIG already knows that the int typemaps apply. You don't have to do anything.
13.1.5 What can be done with typemaps?

The primary use of typemaps is for defining wrapper generation behavior at the level of individual C/C++ datatypes. There are currently six general categories of problems that typemaps
address:

Argument handling

int foo(int x, double y, char *s);

¢ Input argument conversion ("in" typemap).

¢ Input argument type checking for types used in overloaded methods ("typecheck" typemap).
¢ Output argument handling (“argout" typemap).

¢ Input argument value checking (“check" typemap).

¢ |nput argument initialization ("arginit" typemap).

o Default arguments ("default” typemap).

¢ Input argument resource management (“freearg" typemap).

Return value handling

int foo(int x, double y, char *s);

e Function return value conversion (“out" typemap).
* Return value resource management ("ret" typemap).
¢ Resource management for newly allocated objects ("newfree" typemap).

Exception handling

int foo(int x, double y, char *s) throw(MemoryError, IndexError);

« Handling of C++ exception specifications. (“throw" typemap).

Global variables

int foo;

¢ Assignment of a global variable. ("varin" typemap).
¢ Reading a global variable. ("varout" typemap).

Member variables

struct Foo {
int x[20];
}i

¢ Assignment of data to a class/structure member. (“memberin" typemap).

Constant creation

#define FOO 3
%constant int BAR = 42;
enum { ALE, LAGER, STOUT };

* Creation of constant values. ("consttab” or "constcode" typemap).

Details of each of these typemaps will be covered shortly. Also, certain language modules may define additional typemaps that expand upon this list. For example, the Java module defines a
variety of typemaps for controlling additional aspects of the Java bindings. Consult language specific documentation for further details.

13.1.6 What can't be done with typemaps?

Typemaps can't be used to define properties that apply to C/C++ declarations as a whole. For example, suppose you had a declaration like this,

Foo *make Foo(int n);

and you wanted to tell SWIG that make_Foo(int n) returned a newly allocated object (for the purposes of providing better memory management). Clearly, this property of make_Foo (int
n) is not a property that would be associated with the datatypeFoo * by itself. Therefore, a completely different SWIG customization mechanism (% feature) is used for this purpose. Consult
the Customization Features chapter for more information about that.

Typemaps also can't be used to rearrange or transform the order of arguments. For example, if you had a function like this:

void foo(int, char *);

you can't use typemaps to interchange the arguments, allowing you to call the function like this:

foo("hello", 3) # Reversed arguments
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If you want to change the calling conventions of a function, write a helper function instead. For example:

%rename(foo) wrap foo;

%inline %{

void wrap_foo(char *s, int x) {
foo(x, s);

}

%}

13.1.7 Similarities to Aspect Oriented Programming

SWIG has parallels to Aspect Oriented Software Development (AOP). The AOP terminology with respect to SWIG typemaps can be viewed as follows:

Cross-cutting concerns: The cross-cutting concerns are the modularization of the functionality that the typemaps implement, which is primarily marshalling of types from/to the target
language and C/C++.

Advice: The typemap body contains code which is executed whenever the marshalling is required.

Pointcut: The pointcuts are the positions in the wrapper code that the typemap code is generated into.

Aspect: Aspects are the combination of the pointcut and the advice, hence each typemap is an aspect.

SWIG can also be viewed as has having a second set of aspects based around %feature. Features such as $exception are also cross-cutting concerns as they encapsulate code that can
be used to add logging or exception handling to any function.

13.1.8 The rest of this chapter

The rest of this chapter provides detailed information for people who want to write new typemaps. This information is of particular importance to anyone who intends to write a new SWIG target
language module. Power users can also use this information to write application specific type conversion rules.

Since typemaps are strongly tied to the underlying C++ type system, subsequent sections assume that you are reasonably familiar with the basic details of values, pointers, references, arrays,
type qualifiers (e.g., const), structures, namespaces, templates, and memory management in C/C++. If not, you would be well-advised to consult a copy of “The C Programming Language" by
Kernighan and Ritchie or "The C++ Programming Language" by Stroustrup before going any further.

13.2 Typemap specifications

This section describes the behavior of the $typemap directive itself.
13.2.1 Defining a typemap

New typemaps are defined using the $typemap declaration. The general form of this declaration is as follows (parts enclosed in [ ... ] are optional):

%typemap (method [, modifiers]) typelist code ;

method is a simply a name that specifies what kind of typemap is being defined. It is usually a name like "in", "out", or "argout". The purpose of these methods is described later.

modifiers is an optional comma separated list ofname="value" values. These are sometimes to attach extra information to a typemap and is often target-language dependent. They are also
known as typemap attributes.

typelist is a list of the C++ type patterns that the typemap will match. The general form of this list is as follows:

typelist : typepattern [, typepattern, typepattern, ... 1 ;

typepattern : type [ (parms) ]
type name [ (parms) ]
| ( typelist ) [ (parms) ]

Each type pattern is either a simple type, a simple type and argument name, or a list of types in the case of multi-argument typemaps. In addition, each type pattern can be parameterized with
a list of temporary variables (parms). The purpose of these variables will be explained shortly.

code specifies the code used in the typemap. Usually this is C/C++ code, but in the statically typed target languages, such as Java and C#, this can contain target language code for certain
typemaps. It can take any one of the following forms:

code 8 4 ooo I

| 8{ ... %}

Note that the preprocessor will expand code within the {} delimiters, but not in the last two styles of delimiters, see Preprocessor and Typemaps. Here are some examples of valid typemap
specifications:

/* Simple typemap declarations */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}
$typemap(in) int "$1 = PyInt AsLong(S$input);";
%typemap(in) int %{

$1 = PyInt_AsLong($input);
%}

/* Typemap with extra argument name */
%typemap(in) int nonnegative {

}

/* Multiple types in one typemap */
%typemap(in) int, short, long {

$1 = SvIV($input);
}

/* Typemap with modifiers */
$typemap(in, doc="integer") int "$1 = scm to_int($input);";

/* Typemap applied to patterns of multiple arguments */
%typemap(in) (char *str, int len),
(char *buffer, int size)
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{
$1 = PyString_ AsString($input);
$2 = PyString_Size(S$input);

}

/* Typemap with extra pattern parameters */
%typemap(in, numinputs=0) int *output (int temp),
long *output (long temp)
{
$1 = &temp;
}

Admittedly, it's not the most readable syntax at first glance. However, the purpose of the individual pieces will become clear.
13.2.2 Typemap scope

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap may be redefined for different sections of an input file. For example:

// typemapl
%typemap(in) int {

}
int fact(int); // typemapl
int ged(int x, int y); // typemapl

// typemap2
%typemap(in) int {

}

int isprime(int); // typemap2

One exception to the typemap scoping rules pertains to the $extend declaration. $extend is used to attach new declarations to a class or structure definition. Because of this, all of the
declarations in an $extend block are subject to the typemap rules that are in effect at the point where the class itself is defined. For example:

class Foo {

%typemap(in) int {

}

%extend Foo {
int blah(int x); // typemap has no effect. Declaration is attached to Foo which
// appears before the %typemap declaration.

13.2.3 Copying a typemap

A typemap is copied by using assignment. For example:

%typemap(in) Integer = int;

or this:

$typemap(in) Integer, Number, int32_t = int;

Types are often managed by a collection of different typemaps. For example:

%typemap(in) int { ... }
%typemap (out) int { ... }
%typemap(varin) int { ... }
%typemap(varout) int { ... }

To copy all of these typemaps to a new type, use $apply. For example:

%apply int { Integer }; // Copy all int typemaps to Integer
%apply int { Integer, Number }; // Copy all int typemaps to both Integer and Number

The patterns for $apply follow the same rules as for $typemap. For example:

%apply int *output { Integer *output }; // Typemap with name
$apply (char *buf, int len) { (char *buffer, int size) }; // Multiple arguments

13.2.4 Deleting a typemap

A particular typemap can be deleted / cleared by simply defining no code. For example:

%typemap(in) int; // Clears the "in" typemap for int
%typemap(in) int, long, short; // Clears the "in" typemap for int, long, short
%typemap(in) int *output;

The above syntax deletes a typemap for just one typemap method - the "in" method in each of the examples above. The $clear directive is more powerful and will delete / clear a family of
typemaps, that is, all the typemap methods for a given type. For example:
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%clear int; // Delete all typemaps ("in", "out", "varin", ...) for int
%clear int *output, long *output;

Note: Since SWIG's default behavior is defined by typemaps, clearing a fundamental type like int will make that type unusable unless you also define a new family of typemaps immediately
after the clear operation.

13.2.5 Placement of typemaps

Typemap declarations can be declared in the global scope, within a C++ namespace, and within a C++ class. For example:

%typemap(in) int {

}

namespace std {
class string;
$typemap(in) string {
}

}

class Bar {

public:
typedef const int & const_reference;
¥typemap(out) const_reference {
}

b

When a typemap appears inside a namespace or class, it stays in effect until the end of the SWIG input (just like before). However, the typemap takes the local scope into account. Therefore,
this code

namespace std {
class string;
%typemap(in) string {

}

is really defining a typemap for the type std: :string. You could have code like this:

namespace std {
class string;
$typemap(in) string { /* std::string */
}

}

namespace Foo {
class string;
$typemap(in) string { /* Foo::string */
}

}

In this case, there are two completely distinct typemaps that apply to two completely different types (std: : string and Foo: :string).

It should be noted that for scoping to work, SWIG has to know that string is a typename defined within a particular namespace. In this example, this is done using the forward class
declaration class string.

13.3 Pattern matching rules

The section describes the pattern matching rules by which C/C++ datatypes are associated with typemaps. The matching rules can be observed in practice by using the debugging options also
described.

13.3.1 Basic matching rules

Typemaps are matched using both a type and a name (typically the name of a argument). For a given TYPE NAME pair, the following rules are applied, in order, to find a match. The first
typemap found is used.

¢ Typemaps that exactly match TYPE and NAME.

¢ Typemaps that exactly match TYPE only.

¢ If TYPE is a C++ template of typeT< TPARMS >, where TPARMS are the template parameters, the type is stripped of the template parameters and the following checks are then made:
o Typemaps that exactly match T and NAME.
o Typemaps that exactly match T only.

If TYPE includes qualifiers (const, volatile, etc.), each qualifier is stripped one at a time to form a new stripped type and the matching rules above are repeated on the stripped type. The left-
most qualifier is stripped first, resulting in the right-most (or top-level) qualifier being stripped last. For example int const*const is first stripped to int *const then int *.

If TYPE is an array. The following transformation is made:
¢ Replace all dimensions to [ANY ] and look for a generic array typemap.

To illustrate, suppose that you had a function like this:

int foo(const char *s);

To find a typemap for the argument const char *s, SWIG will search for the following typemaps:

const char *s Exact type and name match
const char * Exact type match
char *s Type and name match (qualifier stripped)
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char * Type match (qualifier stripped)

When more than one typemap rule might be defined, only the first match found is actually used. Here is an example that shows how some of the basic rules are applied:

%typemap(in) int *x {
... typemap 1
}

%typemap(in) int * {
... typemap 2
}

%typemap(in) const int *z {
... typemap 3

}
%typemap(in) int [4] {

... typemap 4
}
%typemap(in) int [ANY] {

... typemap 5
}
void A(int *x); // int *x rule (typemap 1)
void B(int *y); // int * rule (typemap 2)
void C(const int *x); // int *x rule (typemap 1)
void D(const int *z); // const int *z rule (typemap 3)
void E(int x[4]); // int [4] rule (typemap 4)
void F(int x[1000]); // int [ANY] rule (typemap 5)

Compatibility note: SWIG-2.0.0 introduced stripping the qualifiers one step at a time. Prior versions stripped all qualifiers in one step.
13.3.2 Typedef reductions matching

If no match is found using the rules in the previous section, SWIG applies a typedef reduction to the type and repeats the typemap search for the reduced type. To illustrate, suppose you had
code like this:

%typemap(in) int {
... typemap 1
}

typedef int Integer;
void blah(Integer x);

To find the typemap for Integer x, SWIG will first search for the following typemaps:

Integer x
Integer

Finding no match, it then applies a reduction Integer -> int to the type and repeats the search.

int x
int --> match: typemap 1

Even though two types might be the same via typedef, SWIG allows typemaps to be defined for each typename independently. This allows for interesting customization possibilities based
solely on the typename itself. For example, you could write code like this:

typedef double pdouble; // Positive double

// typemap 1
%typemap(in) double {
... get a double ...

}
// typemap 2
%typemap(in) pdouble {
... get a positive double ...

}
double sin(double x); // typemap 1
pdouble sqgrt(pdouble x); // typemap 2

When reducing the type, only one typedef reduction is applied at a time. The search process continues to apply reductions until a match is found or until no more reductions can be made.

Fo

complicated types, the reduction process can generate a long list of patterns. Consider the following:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

To find a match for the Row4 rows[10] argument, SWIG would check the following patterns, stopping only when it found a match:

Row4 rows[10]
Rowd [10]

Row4 rows[ANY]
Row4 [ANY]

# Reduce Row4 --> Integer[4]
Integer rows[10][4]

Integer [10][4]

Integer rows[ANY][ANY]
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Integer [ANY][ANY]

# Reduce Integer --> int
int rows[10][4]

int [10][4]

int rows[ANY][ANY]

int [ANY][ANY]

For parameterized types like templates, the situation is even more complicated. Suppose you had some declarations like this:

typedef int Integer;
typedef foo<Integer, Integer> fooii;
void blah(fooii *x);

In this case, the following typemap patterns are searched for the argument fooii *x:

fooii *x
fooii *

# Reduce fooii --> foo<Integer, Integer>
foo<Integer, Integer> *x
foo<Integer, Integer> *

# Reduce Integer -> int
foo<int, Integer> *x
foo<int, Integer> *

# Reduce Integer -> int
foo<int, int> *x
foo<int, int> *

Typemap reductions are always applied to the left-most type that appears. Only when no reductions can be made to the left-most type are reductions made to other parts of the type. This
behavior means that you could define a typemap for foo<int, Integer>, buta typemap for foo<Integer, int> would never be matched. Admittedly, this is rather esoteric--there's little
practical reason to write a typemap quite like that. Of course, you could rely on this to confuse your coworkers even more.

As a point of clarification, it is worth emphasizing that typedef matching is a typedef reduction process only, that is, SWIG does not search for every single possible typedef. Given a type in a
declaration, it will only reduce the type, it won't build it up looking for typedefs. For example, given the type Struct, the typemap below will not be used for the astruct parameter, because
Struct is fully reduced:

struct Struct {...};
typedef Struct StructTypedef;

%typemap(in) StructTypedef {

}

void go(Struct aStruct);

13.3.3 Default typemap matching rules

If the basic pattern matching rules result in no match being made, even after typedef reductions, the default typemap matching rules are used to look for a suitable typemap match. These rules
match a generic typemap based on the reserved SWIGTYPE base type. For example pointers will use SWIGTYPE * and references will use SWIGTYPE &. More precisely, the rules are based
on the C++ class template partial specialization matching rules used by C++ compilers when looking for an appropriate partial template specialization. This means that a match is chosen from
the most specialized set of generic typemap types available. For example, when looking for a match to int const *, the rules will prefer to matchSWIGTYPE const * if available before
matching SWIGTYPE *, before matching SWIGTYPE.

Most SWIG language modules use typemaps to define the default behavior of the C primitive types. This is entirely straightforward. For example, a set of typemaps for primitives marshalled by
value or const reference are written like this:

%typemap(in) int "... convert to
%typemap(in) short "... convert to
%typemap(in) float "... convert to
%typemap(in) const int & "... convert
%typemap(in) const short & convert
%typemap(in) const float & convert

Since typemap matching follows all typedef declarations, any sort of type that is mapped to a primitive type by value or const reference through typedef£ will be picked up by one of these
primitive typemaps. Most language modules also define typemaps for char pointers and char arrays to handle strings, so these non-default types will also be used in preference as the basic
typemap matching rules provide a better match than the default typemap matching rules.

Below is a list of the typical default types supplied by language modules, showing what the "in" typemap would look like:

%typemap(in) SWIGTYPE & { ... default reference handling ... 8
%typemap(in) SWIGTYPE * { ... default pointer handling ... B
%typemap(in) SWIGTYPE *const { default pointer const handling ... 8
%typemap(in) SWIGTYPE *const& { ... default pointer const reference handling ... 8
%typemap(in) SWIGTYPE[ANY] { ... 1D fixed size arrays handling ... }i
%typemap(in) SWIGTYPE [] { . unknown sized array handling ... }i
%typemap(in) enum SWIGTYPE { ... default handling for enum values ... 3}
%typemap(in) const enum SWIGTYPE & { ... default handling for const enum reference values ... };
%typemap(in) SWIGTYPE (CLASS::* { default pointer member handling ... }i
%typemap(in) SWIGTYPE { ... simple default handling ... }i

If you wanted to change SWIG's default handling for simple pointers, you would simply redefine the rule for SWIGTYPE +*. Note, the simple default typemap rule is used to match against
simple types that don't match any other rules:

%typemap(in) SWIGTYPE { ... simple default handling ... }

This typemap is important because it is the rule that gets triggered when call or return by value is used. For instance, if you have a declaration like this:
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double dot_product(Vector a, Vector b);

The Vector type will usually just get matched againstSWIGTYPE. The default implementation of SWIGTYPE is to convert the value into pointers (as described in this earlier section).

By redefining SWIGTYPE it may be possible to implement other behavior. For example, if you cleared all typemaps for SWIGTYPE, SWIG simply won't wrap any unknown datatype (which might
be useful for debugging). Alternatively, you might modify SWIGTYPE to marshal objects into strings instead of converting them to pointers.

Let's consider an example where the following typemaps are defined and SWIG is looking for the best match for the enum shown below:

%typemap(in) const Hello & { }
%typemap(in) const enum SWIGTYPE & { }
%typemap(in) enum SWIGTYPE & { «¢¢ }
%typemap(in) SWIGTYPE & { }
$typemap(in) SWIGTYPE { }

enum Hello {};
const Hello &hi;

The typemap at the top of the list will be chosen, not because it is defined first, but because it is the closest match for the type being wrapped. If any of the typemaps in the above list were not
defined, then the next one on the list would have precedence.

The best way to explore the default typemaps is to look at the ones already defined for a particular language module. Typemap definitions are usually found in the SWIG library in a file such as
java.swg , csharp.swg etc. However, for many of the target languages the typemaps are hidden behind complicated macros, so the best way to view the default typemaps, or any
typemaps for that matter, is to look at the preprocessed output by running swig -E on any interface file. Finally the best way to view the typemap matching rules in action is via the debugging
typemap pattern matching options covered later on.

Compatibility note: The default typemap matching rules were modified in SWIG-2.0.0 from a slightly simpler scheme to match the current C++ class template partial specialization matching
rules.

13.3.4 Multi-arguments typemaps

When multi-argument typemaps are specified, they take precedence over any typemaps specified for a single type. For example:

%typemap(in) (char *buffer, int len) {
// typemap 1
}

%typemap(in) char *buffer {
// typemap 2
}

void foo(char *buffer, int len, int count); // (char *buffer, int len)
void bar(char *buffer, int blah); // char *buffer

Multi-argument typemaps are also more restrictive in the way that they are matched. Currently, the first argument follows the matching rules described in the previous section, but all
subsequent arguments must match exactly.

13.3.5 Matching rules compared to C++ templates

For those intimately familiar with C++ templates, a comparison of the typemap matching rules and template type deduction is interesting. The two areas considered are firstly the default
typemaps and their similarities to partial template specialization and secondly, non-default typemaps and their similarities to full template specialization.

For default (SWIGTYPE) typemaps the rules are inspired by C++ class template partial specialization. For example, given partial specialization for T consts :

template <typename T> struct X { void a()
)

}i
template <typename T> struct X< T const& > { void b( }i

7
H

The full (unspecialized) template is matched with most types, such as:

X< int & > x1; xl.a();

and the following all match the T const& partial specialization:

X< int *const& > x2; x2.b();
X< int const*const& > x3; x3.b();
X< int const& > x4; x4.b();

Now, given just these two default typemaps, where T is analogous to SWIGTYPE:

$typemap(...) SWIGTYPE { ...}
%typemap(...) SWIGTYPE const& { ... }

The generic default typemap SWIGTYPE is used with most types, such as

int &

and the following all match the SWIGTYPE consts& typemap, just like the partial template matching:

int *const&
int const*const&
int const&

Note that the template and typemap matching rules are not identical for all default typemaps though, for example, with arrays.

For non-default typemaps, one might expect SWIG to follow the fully specialized template rules. This is nearly the case, but not quite. Consider a very similar example to the earlier partially
specialized template but this time there is a fully specialized template:
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template <typename T> struct Y { void a();
template <> struct Y< int const & > { void b();

i
i

Only the one type matches the specialized template exactly:

Y< int & > yl; yl.a();
¥< int *const& > ¥2; y2.a();
Y< int const *const& > y3; y3.a():
Y< int const& > y4; y4.b(); // fully specialized match

Given typemaps with the same types used for the template declared above, where T is again analogous to SWIGTYPE:

$typemap(...) SWIGTYPE { ...}
%typemap(...) int const& { ...}

The comparison between non-default typemaps and fully specialized single parameter templates turns out to be the same, as just the one type will match the non-default typemap:

int &

int *const&

int const*const&

int const& // matches non-default typemap int consté&

However, if a non-const type is used instead:

$typemap(...) SWIGTYPE { ...}
%typemap(...) int & & coo P

then there is a clear difference to template matching as both the const and non-const types match the typemap:

int & // matches non-default typemap int &
int *const&

int const*const&

int const& // matches non-default typemap int &

There are other subtle differences such as typedef handling, but at least it should be clear that the typemap matching rules are similar to those for specialized template handling.
13.3.6 Debugging typemap pattern matching
There are two useful debug command line options available for debugging typemaps, -debug-tmsearch and -debug-tmused .
The -debug-tmsearch option is a verbose option for debugging typemap searches. This can be very useful for watching the pattern matching process in action and for debugging which
typemaps are used. The option displays all the typemaps and types that are looked for until a successful pattern match is made. As the display includes searches for each and every type

needed for wrapping, the amount of information displayed can be large. Normally you would manually search through the displayed information for the particular type that you are interested in.

For example, consider some of the code used in the Typedef reductions section already covered:

typedef int Integer;
typedef Integer Rowéd[4];
void foo(Row4 rows[10]);

A sample of the debugging output is shown below for the "in" typemap:

swig -perl -debug-tmsearch example.i
example.h:3: Searching for a suitable 'in' typemap for: Row4 rows[10]
Looking for: Row4 rows[10]
Looking for: Row4 [10]
Looking for: Row4 rows[ANY]
Looking for: Row4 [ANY]
Looking for: Integer rows[10][4]
Looking for: Integer [10][4]
Looking for: Integer rows[ANY][ANY]
Looking for: Integer [ANY][ANY]
Looking for: int rows[10][4]
Looking for: int [10][4]
Looking for: int rows[ANY][ANY]
Looking for: int [ANY][ANY]
Looking for: SWIGTYPE rows[ANY][ANY]
Looking for: SWIGTYPE [ANY][ANY]
Looking for: SWIGTYPE rows[ANY][]
Looking for: SWIGTYPE [ANY][]
Looking for: SWIGTYPE *rows[ANY]
Looking for: SWIGTYPE *[ANY]
Looking for: SWIGTYPE rows[ANY]
Looking for: SWIGTYPE [ANY]
Looking for: SWIGTYPE rows| ]
Looking for: SWIGTYPE []
Using: %typemap(in) SWIGTYPE []

showing that the best default match supplied by SWIG is the SWIGTYPE [ ] typemap. As the example shows, the successful match displays the used typemap source including typemap
method, type and optional name in one of these simplified formats:

e Using: %$typemap(method) type name
e Using: %$typemap(method) type name = type2 name2
® Using: %apply type2 name2 { type name }

This information might meet your debugging needs, however, you might want to analyze further. If you next invoke SWIG with the -E option to display the preprocessed output, and search for
the particular typemap used, you'll find the full typemap contents (example shown below for Python):
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%typemap(in, noblock=1) SWIGTYPE [] (void *argp = 0, int res = 0) {

res = SWIG ConvertPtr($input, &argp, $descriptor, $disown | 0 );
if (!SWIG_IsOK(res)) {
SWIG_exception_fail (SWIG_ArgError(res), "in method '" "$symname" "', argument "
"$argnum"" of type '" "S$type""'");

}
$1 = ($ltype)(argp);

The generated code for the foo wrapper will then contain the snippets of the typemap with the special variables expanded. The rest of this chapter will need reading though to fully understand
all of this, however, the relevant parts of the generated code for the above typemap can be seen below:

SWIGINTERN PyObject * wrap foo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
void *argpl = 0 ;
int resl = 0 ;

resl = SWIG_ConvertPtr(obj0, &argpl, SWIGTYPE p_a 4_ int, 0 | 0);
if (!SWIG_IsOK(resl)) {
SWIG_exception fail(SWIG_ArgError(resl), "in method '" "foo" "', argument "
"1"" of type '" "int [10][4]""'");
}

argl = (int (*)[4])(argpl);

}

Searches for multi-argument typemaps are not mentioned unless a matching multi-argument typemap does actually exist. For example, the output for the code in the earlier multi-arguments
section is as follows:

example.h:39: Searching for a suitable 'in' typemap for: char *buffer
Looking for: char *buffer
Multi-argument typemap found...
Using: %typemap(in) (char *buffer, int len)

The second option for debugging is ~debug-tmused and this displays the typemaps used. This option is a less verbose version of the ~debug-tmsearch option as it only displays each
successfully found typemap on a separate single line. The output displays the type, and name if present, the typemap method in brackets and then the actual typemap used in the same
simplified format output by the ~debug-tmsearch option. Below is the output for the example code at the start of this section on debugging.

$ swig -perl -debug-tmused example.i
example.h:3: Typemap for Row4 rows[10] (in) : %typemap(in) SWIGTYPE []

example. : Typemap for Rowd4 rows[10] (typecheck) : $typemap(typecheck) SWIGTYPE *
example. : Typemap for Row4 rows[10] (freearg) : %typemap(freearg) SWIGTYPE [ ]
example. : Typemap for void foo (out) : %$typemap(out) void

Now, consider the following interface file:

%module example

%{
void set_value(const char* val) {}
%}
%typemap(check) char *NON_NULL {
if (1$1) {
/* ... error handling ... */
}

}

// use default pointer handling instead of strings
%apply SWIGTYPE * { const char* val, const char* another value }

$typemap(check) const char* val = char* NON_NULL;
%typemap(arginit, noblock=1) const char* val {

§1 = "
}

void set_value(const char* val);

and the output debug:

swig -perl5 -debug-tmused example.i

example.i:21: Typemap for char const *val (arginit) : %typemap(arginit) char const *val

Typemap for char const *val (in) : %apply SWIGTYPE * { char const *val }

Typemap for char const *val (typecheck) : %$apply SWIGTYPE * { char const *val }
Typemap for char const *val (check) : %typemap(check) char const *val = char *NON_NULL
Typemap for char const *val (freearg) : %apply SWIGTYPE * { char const *val }
example.i:21: Typemap for void set value (out) : %typemap(out) void

The following observations about what is displayed can be noted (the same applies for -debug-tmsearch):
¢ The relevant typemap is shown, but for typemap copying, the appropriate $typemap or $apply is displayed, for example, the “check" and "in" typemaps.
¢ The typemap modifiers are not shown, eg the noblock=1 modifier in the "arginit" typemap.

¢ The exact $apply statement might look different to what is in the actual code. For example, the const char* another_value is not shown as it is not relevant here. Also the types
may be displayed slightly differently - char const * and notconst char*.

13.4 Code generation rules
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This section describes rules by which typemap code is inserted into the generated wrapper code.
13.4.1 Scope

When a typemap is defined like this:

%typemap(in) int {
$1 = PyInt_AsLong($input);
}

the typemap code is inserted into the wrapper function using a new block scope. In other words, the wrapper code will look like this:

wrap whatever() {
// Typemap code
{
argl = PyInt_AsLong(objl);
}

Because the typemap code is enclosed in its own block, it is legal to declare temporary variables for use during typemap execution. For example:

%typemap(in) short {
long temp; /* Temporary value */
if (Tcl_GetLongFromObj(interp, $input, &temp) != TCL_OK) {
return TCL_ERROR;

}
$1 = (short) temp;

Of course, any variables that you declare inside a typemap are destroyed as soon as the typemap code has executed (they are not visible to other parts of the wrapper function or other
typemaps that might use the same variable names).

Occasionally, typemap code will be specified using a few alternative forms. For example:

$typemap(in) int "$1 = PyInt AsLong(S$input);";
%typemap(in) int %{

$1 = PyInt_AsLong($input);

%}

%typemap(in, noblock=1) int {

$1 = PyInt_AsLong($input);

}

These three forms are mainly used for cosmetics--the specified code is not enclosed inside a block scope when it is emitted. This sometimes results in a less complicated looking wrapper
function. Note that only the third of the three typemaps have the typemap code passed through the SWIG preprocessor.

13.4.2 Declaring new local variables

Sometimes it is useful to declare a new local variable that exists within the scope of the entire wrapper function. A good example of this might be an application in which you wanted to marshal
strings. Suppose you had a C++ function like this

int foo(std::string *s);

and you wanted to pass a native string in the target language as an argument. For instance, in Perl, you wanted the function to work like this:

$x = foo("Hello World");

To do this, you can't just pass a raw Perl string as the std: : string * argument. Instead, you have to create a temporarystd: : string object, copy the Perl string data into it, and then
pass a pointer to the object. To do this, simply specify the typemap with an extra parameter like this:

%typemap(in) std::string * (std::string temp) {
unsigned int len;

char *s;

s = SvPV($input, len); /* Extract string data */
temp.assign(s, len); /* Assign to temp */

$1 = &temp; /* Set argument to point to temp */

In this case, temp becomes a local variable in the scope of the entire wrapper function. For example:

wrap foo() {
std::string temp; <--- Declaration of temp goes here

/* Typemap code */
{

temp.assign(s, len);

When you set temp to a value, it persists for the duration of the wrapper function and gets cleaned up automatically on exit.

It is perfectly safe to use more than one typemap involving local variables in the same declaration. For example, you could declare a function as :
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void foo(std::string *x, std::string *y, std::string *z);

This is safely handled because SWIG actually renames all local variable references by appending an argument number suffix. Therefore, the generated code would actually look like this:

wrap_foo() {
int *argl; /* Actual arguments */
int *arg2;
int *arg3;
std::string templ; /* Locals declared in the typemap */
std tring temp2;
std::string temp3;

char *s;

unsigned int len;
templ.assign(s, len);
argl = *templ;

char *s;

unsigned int len;
temp2.assign(s, len);
arg2 = &temp2;

char *s;

unsigned int len;
temp3.assign(s, len);
arg3 = &temp3;

There is an exception: if the variable name starts with the_global_ prefix, the argument number is not appended. Such variables can be used throughout the generated wrapper function. For

example, the above typemap could be rewritten to use _global_temp instead of temp and the generated code would then contain a single _global_temp variable instead of temp1, temp2
and temp3:

$typemap(in) std::string * (std::string _global_temp) {
... as above ...

}

Some typemaps do not recognize local variables (or they may simply not apply). At this time, only typemaps that apply to argument conversion support this (input typemaps such as the "in"
typemap).

Note:

When declaring a typemap for multiple types, each type must have its own local variable declaration.

$typemap(in) const std::string *, std::string * (std::string temp) // NO!
// only std::string * has a local variable
// const std::string * does not (oops)

%typemap(in) const std::string * (std::string temp), std::string * (std::string temp) // Correct

13.4.3 Special variables

Within all typemaps, the following special variables are expanded. This is by no means a complete list as some target languages have additional special variables which are documented in the
language specific chapters.

H Variable Meaning
H$n A C local variable corresponding to type n in the typemap pattern.

H$argnum Argument number. Only available in typemaps related to argument conversion
H$n7name /Argument name

H$n7type Real C datatype of typen.

$n_ltype Itype of type n

$n_mangle Mangled form of type n. For example _p_Foo

$n_descriptor Type descriptor structure for type n. For example SWIGTYPE_p_Foo. This is primarily used when interacting with the run-time type checker (described

later).
$*n_type Real C datatype of type n with one pointer removed.
$*n_ltype Itype of type n with one pointer removed.

$*n_mangle  |[Mangled form of type n with one pointer removed.
$*n_descriptor ||[Type descriptor structure for type n with one pointer removed.
$&n_type Real C datatype of type n with one pointer added.

$&n_ltype Itype of type n with one pointer added.

$&n_mangle |[Mangled form of type n with one pointer added.
H$&n_descriptor 'Type descriptor structure for type n with one pointer added.
H$n_basetype Base typename with all pointers and qualifiers stripped.

Within the table, $n refers to a specific type within the typemap specification. For example, if you write this

%typemap(in) int *INPUT {

}
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then $1 refers to int *INPUT. If you have a typemap like this,

%typemap(in) (int argc, char *argv[]) {

}

then $1 refers to int argc and $2 refers tochar *argv([].

Substitutions related to types and names always fill in values from the actual code that was matched. This is useful when a typemap might match multiple C datatype. For example:

%typemap(in) int, short, long {
$1 = ($1_ltype) PyInt_AsLong($input);
}

In this case, $1_1type is replaced with the datatype that is actually matched.

When typemap code is emitted, the C/C++ datatype of the special variables $1 and $2 is always an "ltype." An "ltype" is simply a type that can legally appear on the left-hand side of a C
assignment operation. Here are a few examples of types and Itypes:

type ltype

int int

const int int

const int * int *

int [4] int *

int [4][5] int (*)[5]

In most cases a ltype is simply the C datatype with qualifiers stripped off. In addition, arrays are converted into pointers.

Variables such as $&1_type and $*1_type are used to safely modify the type by removing or adding pointers. Although not needed in most typemaps, these substitutions are sometimes
needed to properly work with typemaps that convert values between pointers and values.

If necessary, type related substitutions can also be used when declaring locals. For example:

$typemap(in) int * ($*1_type temp) {
temp = PyInt AsLong($input);
$1 = &temp;

}

There is one word of caution about declaring local variables in this manner. If you declare a local variable using a type substitution such as $1_1type temp, it won't work like you expect for
arrays and certain kinds of pointers. For example, if you wrote this,

%typemap(in) int [10][20] {
$1_ltype temp;
}

then the declaration of temp will be expanded as

int (*)[20] temp;

This is illegal C syntax and won't compile. There is currently no straightforward way to work around this problem in SWIG due to the way that typemap code is expanded and processed.
However, one possible workaround is to simply pick an alternative type such as void * and use casts to get the correct type when needed. For example:

%typemap(in) int [10][20] {
void *temp;

(($1_ltype) temp)[i][j] = x; /* set a value */

Another approach, which only works for arrays is to use the $1_basetype substitution. For example:

%typemap(in) int [10][20] {
$1_basetype temp[10][20];

temp[i][]] = x; /* set a value */

13.4.4 Special variable macros
Special variable macros are like macro functions in that they take one or more input arguments which are used for the macro expansion. They look like macro/function calls but use the special

variable $ prefix to the macro name. Note that unlike normal macros, the expansion is not done by the preprocessor, it is done during the SWIG parsing/compilation stages. The following
special variable macros are available across all language modules.

13.4.4.1 $descriptor(type)
This macro expands into the type descriptor structure for any C/C++ type specified in type. It behaves like the$1_descriptor special variable described above except that the type to

expand is taken from the macro argument rather than inferred from the typemap type. For example, $descriptor(std: :vector<int> *) will expand into
SWIGTYPE_p_std__vectorT_int_t. This macro is mostly used in the scripting target languages and is demonstrated later in the Run-time type checker usage section.

13.4.4.2 stypemap(method, typepattern)

This macro uses the pattern matching rules described earlier to lookup and then substitute the special variable macro with the code in the matched typemap. The typemap to search for is
specified by the arguments, where method is the typemap method name and typepattern is a type pattern as per the $typemap specification in the Defining a typemap section.

The special variables within the matched typemap are expanded into those for the matched typemap type, not the typemap within which the macro is called. In practice, there is little use for
this macro in the scripting target languages. It is mostly used in the target languages that are statically typed as a way to obtain the target language type given the C/C++ type and more

13.4 Code generation rules
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commonly only when the C++ type is a template parameter.

The example below is for C# only and uses some typemap method names documented in the C# chapter, but it shows some of the possible syntax variations.

%typemap(cstype) unsigned long "uint"
%typemap(cstype) unsigned long bb "bool"
%typemap(cscode) BarClass %{
void foo($typemap(cstype, unsigned long aa) varl,
$typemap(cstype, unsigned long bb) var2,
$typemap(cstype, (unsigned long bb)) var3,
$typemap(cstype, unsigned long) var4)
{
// do something
}
%}

The result is the following expansion

%typemap(cstype) unsigned long "uint"
%typemap(cstype) unsigned long bb "bool"
%typemap (cscode) BarClass %{
void foo(uint varl,
bool var2,
bool var3,
uint var4)
{
// do something
}
%}

13.4.5 Special variables and typemap attributes
As of SWIG-3.0.7 typemap attributes will also expand special variables and special variable macros.

Example usage showing the expansion in the 'out' attribute (C# specific) as well as the main typemap body:

$typemap(ctype, out="$*1_ ltype") unsigned int& "$*1_ltype"

is equivalent to the following as $*1_1type expands tounsigned int:

%typemap(ctype, out="unsigned int") unsigned int& "unsigned int"

13.4.6 Special variables combined with special variable macros
Special variables can also be used within special variable macros. The special variables are expanded before they are used in the special variable macros.

Consider the following C# typemaps:

%typemap(cstype) unsigned int "uint"
$typemap(cstype, out="$typemap(cstype, $*1_ltype)") unsigned int& "$typemap(cstype, $*1_ltype)"

Special variables are expanded first and hence the above is equivalent to:

%typemap(cstype) unsigned int "uint"
%typemap(cstype, out="$typemap(cstype, unsigned int)") unsigned int& "S$typemap(cstype, unsigned int)"

which then expands to:

%typemap(cstype) unsigned int "uint"
%typemap(cstype, out="uint") unsigned int& "uint"

13.5 Common typemap methods

The family of typemaps recognized by a language module may vary. However, the following typemap methods are nearly universal:
13.5.1 "in" typemap

The "in" typemap is used to convert function arguments from the target language to C. For example:

%typemap(in) int {
$1 = PyInt_AsLong($input);

}

The following special variables are available:
$input - Input object holding value to be converted.
$symname - Name of function/method being wrapped

This is probably the most commonly redefined typemap because it can be used to implement customized conversions.

In addition, the "in" typemap allows the number of converted arguments to be specified. The numinputs attributes facilitates this. For example:

// Ignored argument.
%typemap(in, numinputs=0) int *out (int temp) {
$1 = &temp;

13.5 Common typemap methods
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At this time, only zero or one arguments may be converted. When numinputs is set to 0, the argument is effectively ignored and cannot be supplied from the target language. The argument
is still required when making the C/C++ call and the above typemap shows the value used is instead obtained from a locally declared variable called temp. Usually numinputs is not
specified, whereupon the default value is 1, that is, there is a one to one mapping of the number of arguments when used from the target language to the C/C++ call. Multi-argument typemaps
provide a similar concept where the number of arguments mapped from the target language to C/C++ can be changed for multiple adjacent C/C++ arguments.

Compatibility note: Specifying numinputs=0 is the same as the old "ignore" typemap.
13.5.2 "typecheck" typemap

The "typecheck" typemap is used to support overloaded functions and methods. It merely checks an argument to see whether or not it matches a specific type. For example:

$typemap (typecheck, precedence=SWIG_TYPECHECK_ INTEGER) int {
$1 = PyInt_Check($input) ? 1 : 0;
}

For typechecking, the $1 variable is always a simple integer that is set to 1 or 0 depending on whether or not the input argument is the correct type. Set to 1 if the input argument is the correct
type otherwise set to 0.

If you define new "in" typemaps and your program uses overloaded methods, you should also define a collection of "typecheck" typemaps. More details about this follow in the Typemaps and
overloading section.

13.5.3 "out" typemap

The "out" typemap is used to convert function/method return values from C into the target language. For example:

%typemap(out) int {
$result = PyInt_FromLong($1l);
}

The following special variables are available.

$result - Result object returned to target language.
$symname - Name of function/method being wrapped

The "out" typemap supports an optional attribute flag called "optimal”. This is for code optimisation and is detailed in the Optimal code generation when returning by value section.
13.5.4 "arginit" typemap

The “arginit" typemap is used to set the initial value of a function argument--before any conversion has occurred. This is not normally necessary, but might be useful in highly specialized
applications. For example:

// Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {

$1 = NULL;
}

13.5.5 "default" typemap

The "default” typemap is used to turn an argument into a default argument. For example:

%typemap(default) int flags {
$1 = DEFAULT_FLAGS;
}

int foo(int x, int y, int flags);

The primary use of this typemap is to either change the wrapping of default arguments or specify a default argument in a language where they aren't supported (like C). Target languages that
do not support optional arguments, such as Java and C#, effectively ignore the value specified by this typemap as all arguments must be given.

Once a default typemap has been applied to an argument, all arguments that follow must have default values. See the Default/optional arguments section for further information on default
argument wrapping.

13.5.6 "check" typemap

The "check" typemap is used to supply value checking code during argument conversion. The typemap is applied after arguments have been converted. For example:

%typemap(check) int positive {
if ($1 <= 0) {
SWIG_exception(SWIG_ValueError, "Expected positive value.");
}
}

13.5.7 "argout" typemap

The "argout" typemap is used to return values from arguments. This is most commonly used to write wrappers for C/C++ functions that need to return multiple values. The “argout" typemap is
almost always combined with an "in" typemap---possibly to ignore the input value. For example:

/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {

$1 = &temp;
}

%typemap(argout) int *out {
// Append output value $1 to $result

13.5 Common typemap methods
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The following special variables are available.

$result - Result object returned to target language.
$input - The original input object passed.
$symname - Name of function/method being wrapped

The code supplied to the "argout" typemap is always placed after the "out" typemap. If multiple return values are used, the extra return values are often appended to return value of the
function.

See the typemaps. i library file for examples.
13.5.8 "freearg" typemap

The “freearg" typemap is used to cleanup argument data. It is only used when an argument might have allocated resources that need to be cleaned up when the wrapper function exits. The
“freearg” typemap usually cleans up argument resources allocated by the "in" typemap. For example:

// Get a list of integers
%typemap(in) int *items {
int nitems = Length($input);
$1 = (int *) malloc(sizeof(int)*nitems);

// Free the list

%typemap (freearg) int *items {
free($1);

}

The “freearg" typemap inserted at the end of the wrapper function, just before control is returned back to the target language. This code is also placed into a special variable $cleanup that
may be used in other typemaps whenever a wrapper function needs to abort prematurely.

13.5.9 "newfree" typemap

The "newfree" typemap is used in conjunction with the $newobject directive and is used to deallocate memory used by the return result of a function. For example:

%typemap (newfree) string * {
delete $1;
}
%typemap(out) string * {
$result = PyString FromString($l->c_str());
}

%newobject foo;

string *foo();

See Object ownership and %newobject for further details.
13.5.10 "ret" typemap

The "ret" typemap is not used very often, but can be useful for anything associated with the return type, such as resource management, return value error checking, etc. Usually this can all be
done in the "out" typemap, but sometimes it is handy to use the "out" typemap code untouched and add to the generated code using the code in the "ret" typemap. One such case is memory
clean up. For example, a stringheap_t type is defined indicating that the returned memory must be deleted and a string_t type is defined indicating that the returned memory must not be
deleted.

$typemap(ret) stringheap_t %{
free($1);
%}

typedef char * string_t;
typedef char * stringheap_t;

string_t MakeStringl();
stringheap_t MakeString2();

The "ret" typemap above will only be used for MakeString2, but both functions will use the default “out" typemap for char * provided by SWIG. The code above would ensure the
appropriate memory is freed in all target languages as the need to provide custom "out" typemaps (which involve target language specific code) is not necessary.

This approach is an alternative to using the "newfree" typemap and $newobject as there is no need to list all the functions that require the memory cleanup, it is purely done on types.
13.5.11 "memberin" typemap

The "memberin” typemap is used to copy data from an already converted input value into a structure member. It is typically used to handle array members and other special cases. For
example:

%typemap (memberin) int [4] {
memmove($1, $input, 4*sizeof(int));

}

It is rarely necessary to write "memberin" typemaps---SWIG already provides a default implementation for arrays, strings, and other objects.
13.5.12 "varin" typemap
The "varin" typemap is used to convert objects in the target language to C for the purposes of assigning to a C/C++ global variable. This is implementation specific.
13.5.13 "varout” typemap
The "varout" typemap is used to convert a C/C++ object to an object in the target language when reading a C/C++ global variable. This is implementation specific.
13.5.14 "throws" typemap
The “throws" typemap is only used when SWIG parses a C++ method with an exception specification or has the $catches feature attached to the method (see Exception handling with

Y%catches). It provides a default mechanism for handling C++ methods that have declared the exceptions they will throw. The purpose of this typemap is to convert a C++ exception into an
error or exception in the target language. It is slightly different to the other typemaps as it is based around the exception type rather than the type of a parameter or variable. For example:

13.5 Common typemap methods
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%typemap(throws) const char * %{
PyErr_SetString(PyExc_RuntimeError, $1);
SWIG_fail;

%}

// Either an exception specification on the method
void bar() throw (const char *);

// Or a %$catches feature attached to the method
$catches(const char *) bar();
void bar();

try {
bar();

} catch(char const *_e) {
PyErr_SetString(PyExc_RuntimeError, _e);
SWIG fail;

}

Note that if your methods do not have an exception specification but they do throw exceptions and you are not using $catches, SWIG cannot know how to deal with them. Please also see

the Exception handling with %exception section for another way to handle exceptions.
13.6 Some typemap examples
This section contains a few examples. Consult language module documentation for more examples.
13.6.1 Typemaps for arrays

A common use of typemaps is to provide support for C arrays appearing both as arguments to functions and as structure members.

For example, suppose you had a function like this:

void set_vector(int type, float value[4]);

If you wanted to handle float value[4] as a list of floats, you might write a typemap similar to this:

%typemap(in) float value[4] (float temp[4]) {

int i;

if (!PySequence Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expected a sequence");
SWIG fail;

}

if (PySequence_Length($input) != 4) {
PyErr_SetString(PyExc_ValueError, "Size mismatch. Expected 4 elements");
SWIG_fail;

¥

for (i = 0; i < 4; i++) {
PyObject *o = PySequence_GetItem($input, i);
if (PyNumber_Check(o)) {

temp[i] = (float) PyFloat_AsDouble(o);

} else {

PyErr_SetString(PyExc_ValueError, "Sequence elements must be numbers");
SWIG fail;

In th

When used from Python, the typemap allows the following type of function call:

is example, the variable temp allocates a small array on the C stack. The typemap then populates this array and passes it to the underlying C function.

>>> set vector(type, [ 1, 2.5, 5, 20 ])

If you wanted to generalize the typemap to apply to arrays of all dimensions you might write this:

$typemap(in) float value[ANY] (float temp[$1_dim0]) {

int ij;

if (!PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expected a sequence");
SWIG_fail;

}

if (PySequence Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError, "Size mismatch. Expected $1_dim0 elements");
SWIG fail;

}

for (i = 0; i < $1_dim0; i++) {
PyObject *o = PySequence_GetItem($input, i);
if (PyNumber_Check(o)) {
temp[i] = (float) PyFloat_AsDouble(o);
} else {

PyErr_SetString(PyExc_ValueError, "Sequence elements must be numbers");
SWIG_fail;

13.6 Some typemap examples

an be seen from the resulting generated code below, SWIG generates an exception handler when wrapping the bar function with the catch block comprising the “throws" typemap content.
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In this example, the special variable $1_dimo0 is expanded with the actual array dimensions. Multidimensional arrays can be matched in a similar manner. For example:

$typemap(in) float matrix[ANY][ANY] (float temp[$1_dim0][$1_diml]) {
... convert a 2d array ...

}

For large arrays, it may be impractical to allocate storage on the stack using a temporary variable as shown. To work with heap allocated data, the following technique can be used.

%typemap(in) float value[ANY] {
int i;
if (!PySequence Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expected a sequence");

SWIG fail;

}

if (PySequence Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError, "Size mismatch. Expected $1_dim0 elements");
SWIG_fail;

}

$1 = (float *) malloc($l_dimO*sizeof(float));
for (i = 0; i < $1_dim0; i++) {
PyObject *o = PySequence_GetItem($input, i);
if (PyNumber_Check(o)) {
$1[i] = (float) PyFloat_AsDouble(o);
} else {
free($1l);
PyErr_SetString(PyExc_ValueError, "Sequence elements must be numbers");
SWIG_fail;
}
}
}
%typemap (freearg) float value[ANY] {
if ($1) free($1);
}

In this case, an array is allocated using malloc. The freearg typemap is then used to release the argument after the function has been called.

Another common use of array typemaps is to provide support for array structure members. Due to subtle differences between pointers and arrays in C, you can't just "assign" to a array
structure member. Instead, you have to explicitly copy elements into the array. For example, suppose you had a structure like this:

struct SomeObject {
float wvalue[4];

When SWIG runs, it won't produce any code to set the vec member. You may even get a warning message like this:

$ swig -python example.i
example.i:10: Warning 462: Unable to set variable of type float [4].

These warning messages indicate that SWIG does not know how you want to set the vec field.

To fix this, you can supply a special "memberin” typemap like this:

%typemap (memberin) float [ANY] {

int i;

for (i = 0; i < $1_dim0; i++) {
$1[i] = $input[i];

}

The memberin typemap is used to set a structure member from data that has already been converted from the target language to C. In this case, $input is the local variable in which
converted input data is stored. This typemap then copies this data into the structure.

When combined with the earlier typemaps for arrays, the combination of the "in" and "memberin” typemap allows the following usage:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]

Related to structure member input, it may be desirable to return structure members as a new kind of object. For example, in this example, you will get very odd program behavior where the
structure member can be set nicely, but reading the member simply returns a pointer:

>>> s = SomeObject()

>>> s.x = [1, 2.5, 5, 10]
>>> print s.x
_1008fea8_p float

>>>

To fix this, you can write an "out" typemap. For example:

%typemap(out) float [ANY] {
int i;
$result = PyList_New($1_dim0);
for (i = 0; i < $1_dim0; i++) {
PyObject *o = PyFloat_ FromDouble((double) $1[i]);
PyList_SetItem($result, i, o);
}

13.6 Some typemap examples
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Now, you will find that member access is quite nice:

>>> s = SomeObject()

>>> s.x = [1, 2.5, 5, 10]
>>> print s.x

[ 1, 2.5, 5, 10]

Compatibility Note: SWIG1.1 used to provide a special "memberout” typemap. However, it was mostly useless and has since been eliminated. To return structure members, simply use the
“out" typemap.

13.6.2 Implementing constraints with typemaps

One particularly interesting application of typemaps is the implementation of argument constraints. This can be done with the “check" typemap. When used, this allows you to provide code for
checking the values of function arguments. For example:

gmodule math

%typemap(check) double posdouble {
if ($1 < 0) {
croak("Expecting a positive number");

}

double sqrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this function, a Perl exception will be raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example:

%typemap (check) Vector * {
if ($1 == 0) {
PyErr_SetString(PyExc_TypeError, "NULL Pointer not allowed");
SWIG fail;
}

will prevent any function involving a vector * from accepting a NULL pointer. As a result, SWIG can often prevent a potential segmentation faults or other run-time problems by raising an
exception rather than blindly passing values to the underlying C/C++ program.

13.7 Typemaps for multiple target languages

The code within typemaps is usually language dependent, however, many target languages support the same typemaps. In order to distinguish typemaps across different languages, the
preprocessor should be used. For example, the "in" typemap for Perl and Ruby could be written as:

#if defined(SWIGPERL)
stypemap(in) int "$1 = ($1_ltype) SvIV($input);"
#elif defined(SWIGRUBY)
%typemap(in) int "$1 = NUM2INT($input);"
#else
#warning no "in" typemap defined
#endif

The full set of language specific macros is defined in the Conditional Compilation section. The example above also shows a common approach of issuing a warning for an as yet unsupported
language.

Compatibility note: In SWIG-1.1 different languages could be distinguished with the language name being put within the $typemap directive, for example,
$typemap(ruby, in) int "$1 = NUM2INT(S$input);".

13.8 Optimal code generation when returning by value

The "out" typemap is the main typemap for return types. This typemap supports an optional attribute flag called "optimal", which is for reducing the number of temporary variables and the
amount of generated code, thereby giving the compiler the opportunity to use return value optimization for generating faster executing code. It only really makes a difference when returning
objects by value and has some limitations on usage, as explained later on.

When a function returns an object by value, SWIG generates code that instantiates the default type on the stack then assigns the value returned by the function call to it. A copy of this object is
then made on the heap and this is what is ultimately stored and used from the target language. This will be clearer considering an example. Consider running the following code through SWIG:

%typemap(out) SWIGTYPE %{
$result = new $1_ltype((const $1_ltype &)$1);
%}

%inline %{
#include <iostream>
using namespace std;

struct XX {
XX () { cout << "XX()" << endl; }
XX(int i) { cout << "XX(" << i << ")" << endl; }
XX (const XX &other) { cout << "XX(const XX &)" << endl; }
XX & operator =(const XX &other) { cout << "operator=(const XX &)" << endl; return *this; }
~XX() { cout << "~XX()" << endl; }
static XX create() {
return XX(0);
}

Yi

13.7 Typemaps for multiple target languages
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The "out" typemap shown is the default typemap for C# when returning objects by value. When making a call to XX: :create () from C#, the output is as follows:

XX ()

XX(0)

operator=(const XX &)
~XX()

XX (const XX &)

~XX()

~XX()

Note that three objects are being created as well as an assignment. Wouldn't it be great if the XX: :create () method was the only time a constructor was called? As the method returns by
value, this is asking a lot and the code that SWIG generates by default makes it impossible for the compiler to use return value optimisation (RVO) . However, this is where the "optimal”
attribute in the "out" typemap can help out. If the typemap code is kept the same and just the "optimal" attribute specified like this:

%typemap(out, optimal="1") SWIGTYPE %{
$result = new $1_ltype((const $1_ltype &)$1);
%}

then when the code is run again, the output is simply:

XX(0)
~XX()

How the "optimal" attribute works is best explained using the generated code. Without "optimal”, the generated code is:

SWIGEXPORT void * SWIGSTDCALL CSharp XX create() {
void * jresult ;
XX result;
result = XX::create();
jresult = new XX((const XX &)result);
return jresult;

With the "optimal” attribute, the code is:

SWIGEXPORT void * SWIGSTDCALL CSharp XX_create() {
void * jresult ;
jresult = new XX((const XX &)XX::create());
return jresult;

}

The major difference is the result temporary variable holding the value returned from XX: :create() is no longer generated and instead the copy constructor call is made directly from the
value returned by XX: :create (). With modern compilers implementing RVO, the copy is not actually done, in fact the object is never created on the stack in XX: :create() atall, itis
simply created directly on the heap. In the first instance, the $1 special variable in the typemap is expanded into result. In the second instance, $1 is expanded into XX: :create () and this
is essentially what the "optimal" attribute is telling SWIG to do.

The "optimal" attribute optimisation is not turned on by default as it has a number of restrictions. Firstly, some code cannot be condensed into a simple call for passing into the copy constructor.
One common occurrence is when %exception is used. Consider adding the following $exception to the example:

%exception XX::create() %{
try {
Saction
} catch(const std::exception &e) {
cout << e.what() << endl;
}
%}

SWIG can detect when the "optimal" attribute cannot be used and will ignore it and in this case will issue the following warning:

example.i:28: Warning 474: Method XX::create() usage of the optimal attribute ignored
example.i:14: Warning 474: in the out typemap as the following cannot be used to generate
optimal code:
try {

result = XX::create();
} catch(const std::exception &e) {

cout << e.what() << endl;

}

It should be clear that the above code cannot be used as the argument to the copy constructor call, that is, for the $1 substitution.

Secondly, if the typemaps uses $1 more than once, then multiple calls to the wrapped function will be made. Obviously that is not very optimal. In fact SWIG attempts to detect this and will
issue a warning something like:

example.i:21: Warning 475: Multiple calls to XX::create() might be generated due to
example.i:7: Warning 475: optimal attribute usage in the out typemap.

However, it doesn't always get it right, for example when $1 is within some commented out code.
13.9 Multi-argument typemaps

So far, the typemaps presented have focused on the problem of dealing with single values. For example, converting a single input object to a single argument in a function call. However,
certain conversion problems are difficult to handle in this manner. As an example, consider the example at the very beginning of this chapter:

int foo(int argc, char *argv[]);

13.9 Multi-argument typemaps
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Suppose that you wanted to wrap this function so that it accepted a single list of strings like this:

>>> foo(["ale", "lager", "stout"])

To do this, you not only need to map a list of strings to char *argv[ ], but the value ofint argc is implicitly determined by the length of the list. Using only simple typemaps, this type of
conversion is possible, but extremely painful. Multi-argument typemaps help in this situation.

A multi-argument typemap is a conversion rule that specifies how to convert a single object in the target language to a set of consecutive function arguments in C/C++. For example, the
following multi-argument maps perform the conversion described for the above example:

%typemap(in) (int argc, char *argv[]) {
int i;
if (!PyList_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a list");
SWIG_fail;
}
$1 = PyList Size($input);
$2 = (char **) malloc(($1l+1l)*sizeof(char *));
for (i = 0; i < $1; i++) {
PyObject *s = PyList_ GetItem($input, i);
if (!PyString_Check(s)) {
free($2);
PyErr_SetString(PyExc_ValueError, "List items must be strings");
SWIG_fail;
}
$2[1i] = PyString_AsString(s);

}
$2[i] = 0;
}

%typemap (freearg) (int argc, char *argv[]) {
if ($2) free($2);
}

/* Required for C++ method overloading */

$typecheck (SWIG_TYPECHECK_STRING_ARRAY) (int argc, char *argv[]) {
$1 = PyList_Check($input) 2 1 : 0;

}

A multi-argument map is always specified by surrounding the arguments with parentheses as shown. For example:

%typemap(in) (int argc, char *argv[]) { ... }

Within the typemap code, the variables $1, $2, and so forth refer to each type in the map. All of the usual substitutions apply--just use the appropriate $1 or $2 prefix on the variable name
(e.g., $2_type, $1_ltype, etc.)

Multi-argument typemaps always have precedence over simple typemaps and SWIG always performs longest-match searching. Therefore, you will get the following behavior:

%typemap(in) int argc { ... typemap 1 ... }
%typemap(in) (int argc, char *argv[]) { ... typemap 2 ... }
%typemap(in) (int argc, char *argv[], char *env[]) { ... typemap 3 ... }
int foo(int argc, char *argv[]); // Uses typemap 2
int bar(int argc, int x); // Uses typemap 1
int spam(int argc, char *argv[], char *env[]); // Uses typemap 3

It should be stressed that multi-argument typemaps can appear anywhere in a function declaration and can appear more than once. For example, you could write this:

%typemap(in) (int scount, char *swords[]) { ... }
%typemap(in) (int wcount, char *words[]) { ... }

void search_words(int scount, char *swords[], int wcount, char *words[], int maxcount);

Other directives such as $apply and $clear also work with multi-argument maps. For example:

%apply (int argc, char *argv[]) {
(int scount, char *swords[]),
(int wcount, char *words[])
Yi
%clear (int scount, char *swords[]), (int wcount, char *words[]);

Don't forget to also provide a suitable typemap for overloaded functions, such as $typecheck shown for foo above. This is only required if the function is overloaded in C++.

Although multi-argument typemaps may seem like an exaotic, little used feature, there are several situations where they make sense. First, suppose you wanted to wrap functions similar to the
low-level read () and write() system calls. For example:

typedef unsigned int size t;

int read(int fd, void *rbuffer, size t len);
int write(int fd, void *wbuffer, size_t len);

As is, the only way to use the functions would be to allocate memory and pass some kind of pointer as the second argument---a process that might require the use of a helper function.
However, using multi-argument maps, the functions can be transformed into something more natural. For example, you might write typemaps like this:

// typemap for an outgoing buffer
$typemap(in) (void *wbuffer, size t len) {
if (!PyString_Check($input)) {
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PyErr_SetString(PyExc_ValueError, "Expecting a string");
SWIG_fail;
}
$1 = (void *) PyString_AsString(Sinput);
$2 = PyString_Size($input);
}

// typemap for an incoming buffer
$typemap(in) (void *rbuffer, size t len) {
if (!PyInt_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting an integer");
SWIG_fail;
}
$2 = PyInt_AsLong($input);
if ($2 < 0) {
PyErr_SetString(PyExc_ValueError, "Positive integer expected");
SWIG_fail;

}
$1 = (void *) malloc($2);
}

// Return the buffer. Discarding any previous return result
$typemap(argout) (void *rbuffer, size_t len) {
Py_XDECREF ($result); /* Blow away any previous result */
if (result < 0) { /* Check for I/O error */
free($1);
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
$result = PyString FromStringAndSize($1, result);
free($1);
}

(note: In the above example, $result and result are two different variables. result is the real C datatype that was returned by the function. $result is the scripting language object
being returned to the interpreter.).

Now, in a script, you can write code that simply passes buffers as strings like this:

>>> f = example.open("Makefile")
>>> example.read(f, 40)

' TOP = ../..\nSWIG = $(TOP)/."'
>>> example.read(f, 40)

' ./swig\nSRCS = example.c\nTARGET '
>>> example.close(f)

0

>>> g = example.open("foo", example.O WRONLY | example.O_ CREAT, 0644)
>>> example.write(g, "Hello world\n")

12

>>> example.write(g, "This is a test\n")

15

>>> example.close(qg)

A number of multi-argument typemap problems also arise in libraries that perform matrix-calculations--especially if they are mapped onto low-level Fortran or C code. For example, you might
have a function like this:

int is_symmetric(double *mat, int rows, int columns);

In this case, you might want to pass some kind of higher-level object as an matrix. To do this, you could write a multi-argument typemap like this:

%typemap(in) (double *mat, int rows, int columns) {
MatrixObject *a;
a = GetMatrixFromObject($input); /* Get matrix somehow */

/* Get matrix properties */
$1 = GetPointer(a);

$2 = GetRows(a);

$3 = GetColumns(a);

This kind of technique can be used to hook into scripting-language matrix packages such as Numeric Python. However, it should also be stressed that some care is in order. For example,
when crossing languages you may need to worry about issues such as row-major vs. column-major ordering (and perform conversions if needed). Note that multi-argument typemaps cannot
deal with non-consecutive C/C++ arguments; a workaround such as a helper function re-ordering the arguments to make them consecutive will need to be written.

13.10 Typemap warnings
Warnings can be added to typemaps so that SWIG generates a warning message whenever the typemap is used. See the information in the issuing warnings section.
13.11 Typemap fragments

The primary purpose of fragments is to reduce code bloat that repeated use of typemap code can lead to. Fragments are snippets of code that can be thought of as code dependencies of a
typemap. If a fragment is used by more than one typemap, then the snippet of code within the fragment is only generated once. Code bloat is typically reduced by moving typemap code into a
support function and then placing the support function into a fragment.

For example, if you have a very long typemap

%typemap(in) MyClass * {
MyClass *value = 0;

... many lines of marshalling code ...

$result = value;
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the same marshalling code is often repeated in several typemaps, such as "in", “varin”, "directorout", etc. SWIG copies the code for each argument that requires the typemap code, easily

leading to code bloat in the generated code. To eliminate this, define a fragment that includes the common marshalling code:

%fragment ("AsMyClass", "header") {
MyClass *AsMyClass(PyObject *obj) {
MyClass *value = 0;

... many lines of marshalling code ...

return value;
}
}

%typemap(in, fragment="AsMyClass") MyClass * {
$result = AsMyClass($input);
}

%typemap(varin, fragment="AsMyClass") MyClass * {
$result = AsMyClass($input);
}

When the "in" or "varin" typemaps for MyClass are required, the contents of the fragment called "AsMyClass" is added to the "header" section within the generated code, and then the typemap

code is emitted. Hence, the method AsMyClass will be generated into the wrapper code before any typemap code that calls it.

To define a fragment you need a fragment name, a section name for generating the fragment code into, and the code itself. See Code insertion blocks for a full list of section names. Usually

the section name used is "header". Different delimiters can be used:

$fragment ("my_name", "header") %{ ... %}
%fragment ("my_name", "header") { ... }
%fragment ("my_name", "header") " ... "

and these follow the usual preprocessing rules mentioned in the Preprocessing delimiters section. The following are some rules and guidelines for using fragments:

1. Afragment is added to the wrapping code only once. When using the MyClass * typemaps above and wrapping the method:

void foo(MyClass *a, MyClass *b);

the generated code will look something like:

MyClass *AsMyClass(PyObject *obj) {
}

void _wrap_foo(...) {
argl = AsMyClass(objl);
arg2 = AsMyClass(obj2);

foo(argl, arg2);

even as there is duplicated typemap code to process both a and b, the AsMyClass method will be defined only once.

2. A fragment should only be defined once. If there is more than one definition, the first definition is the one used. All other definitions are silently ignored. For example, if you have

$fragment ("AsMyClass", "header") { ...definition 1... }

¢fragment ("AsMyClass", "header") { ...definition 2... }

only the first definition is used. In this way you can override the default fragments in a SWIG library by defining your fragment before the library $include. Note that this behavior is the

opposite to typemaps, where the last typemap defined/applied prevails. Fragments follow the first-in-first-out convention since they are intended to be global, while typemaps are
intended to be locally specialized.

3. Fragment names cannot contain commas.

4. A fragment can use one or more additional fragments, for example:

$fragment ("<limits.h>", "header") $%{
#include <limits.h>

%}

%fragment ("AsMyClass", "header", fragment="<limits.h>") {
MyClass *AsMyClass(PyObject *obj) {
MyClass *value = 0;

... some marshalling code ...

if (ival < CHAR_MIN /*defined in <limits.h>*/) {
} else {

}

return value;
}
}

in this case, when the "AsMyClass" fragment is emitted, it also triggers the inclusion of the "<limits.h>" fragment.
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5. A fragment can have dependencies on a number of other fragments, for example:

$fragment ("bigfragment", "header", fragment="fragl", fragment="frag2", fragment="frag3") "";

When the "bigfragment” is used, the three dependent fragments “fragl", "“frag2" and "frag3" are also pulled in. Note that as "bigframent" is empty (the empty string - "), it does not add
any code itself, but merely triggers the inclusion of the other fragments.

6. Atypemap can also use more than one fragment, but since the syntax is different, you need to specify the dependent fragments in a comma separated list. Consider:

$typemap(in, fragment="fragl, frag2, frag3") {...}

which is equivalent to:

$typemap(in, fragment="bigfragment") {...}

when used with the "bigfragment" defined above.

7. Finally, you can force the inclusion of a fragment at any point in the generated code as follows:

¢fragment ("bigfragment");

which, for example, is very useful inside a template class. Another useful case is when using $extend inside a class where the additional code in the $extend block depends on the
contents of the fragment.

¢fragment ("<limits.h>", "header") %{
#include <limits.h>
%}

struct X {
%extend {
$fragment ("<limits.h>");
bool check(short val) {
if (val < SHRT_MIN /*defined in <limits.h>*/) {
return true;
} else {
return false;

Forced inclusion of fragments can be used as a replacement for code insertion block, ensuring the code block is only generated once. Consider the contents of FileA.i below which first
uses a code insertion block and then a forced fragment inclusion to generate code:

// FileA.i

%{

#include <stdio.h>

%}

gfragment ("<limits.h>");

and another file including the above:

// FileB.i
$include "FileA.i"

The resulting code in the wrappers for FileB.i is:

#include <stdio.h>

#include <limits.h>

A note of caution must be mentioned when using $fragment forced inclusion or code insertion blocks with $import. If $import is used instead:

// FileC.i
$import "FileA.i"

then nothing is generated in the resulting code in the wrappers for FileC.i. This is because $import is for collecting type information and does not result in any code being generated,
see File Imports.

Most readers will probably want to skip the next two sub-sections on advanced fragment usage unless a desire to really get to grips with some powerful but tricky macro and fragment usage
that is used in parts of the SWIG typemap library.

13.11.1 Fragment type specialization

Fragments can be type specialized. The syntax is as follows:

%fragment ("name", "header") { ...a type independent fragment... }
%fragment ("name"{type}, "header") { ...a type dependent fragment... }

where type is a C/C++ type. Like typemaps, fragments can also be used inside templates, for example:

template <class T>
struct A {
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%fragment ("incode" {A<T>}, "header") {
... 'incode' specialized fragment

}

$typemap(in, fragment="incode"{A<T>}) {
... here we use the 'type specialized' fragment "incode"{A<T>} ...
}
}i

13.11.2 Fragments and automatic typemap specialization

Since fragments can be type specialized, they can be elegantly used to specialize typemaps. For example, if you have something like:

%fragment ("incode" {float}, "header") {
float in method_float(PyObject *obj) {

}
}

%fragment ("incode"{long}, "header") {
float in method_long(PyObject *obj) {

}
}

// %my_typemaps macro definition

$define %my_typemaps (Type)

%typemap(in, fragment="incode"{Type}) Type {
value = in method_##Type(obj);

}

%enddef

$my_typemaps (float);
¥my_typemaps(long);

then the proper "incode"{float} or "incode" {long} fragment will be used, and the in_method float and in_method_long methods will be called whenever thefloat or long

types are used as input parameters.

This feature is used a lot in the typemaps shipped in the SWIG library for some scripting languages. The interested (or very brave) reader can take a look at the fragments.swg file shipped with

SWIG to see this in action.

13.12 The run-time type checker

Most scripting languages need type information at run-time. This type information can include how to construct types, how to garbage collect types, and the inheritance relationships between

types. If the language interface does not provide its own type information storage, the generated SWIG code needs to provide it.
Requirements for the type system:

Store inheritance and type equivalence information and be able to correctly re-create the type pointer.
Share type information between modules.

Modules can be loaded in any order, regardless of actual type dependency.

Avoid the use of dynamically allocated memory, and library/system calls in general.

Provide a reasonably fast implementation, minimizing the lookup time for all language modules.
Custom, language specific information can be attached to types.

Modules can be unloaded from the type system.

13.12.1 Implementation

The run-time type checker is used by many, but not all, of SWIG's supported target languages. The run-time type checker features are not required and are thus not used for statically typed

languages such as Java and C#. The scripting and scheme based languages rely on it and it forms a critical part of SWIG's operation for these languages.

When pointers, arrays, and objects are wrapped by SWIG, they are normally converted into typed pointer objects. For example, an instance of Foo * might be a string encoded like this:

_108e688_p_Foo

At a basic level, the type checker simply restores some type-safety to extension modules. However, the type checker is also responsible for making sure that wrapped C++ classes are

handled correctly---especially when inheritance is used. This is especially important when an extension module makes use of multiple inheritance. For example:

class Foo {
public:
int x;

}i

class Bar {
public:

int y;
Yi

class FooBar : public Foo, public Bar {
public:
int z;

}i

When the class FooBar is organized in memory, it contains the contents of the classes Foo and Bar as well as its own data members. For example:

FooBar --> | ——————————- | <-- Foo
| int x |
[E=====———— | <-- Bar
| int y |
A |
| int z
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Because of the way that base class data is stacked together, the casting of a Foobar * to either of the base classes may change the actual value of the pointer. This means that it is
generally not safe to represent pointers using a simple integer or a bare void * ---type tags are needed to implement correct handling of pointer values (and to make adjustments when
needed).

In the wrapper code generated for each language, pointers are handled through the use of special type descriptors and conversion functions. For example, if you look at the wrapper code for
Python, you will see code similar to the following (simplified for brevity):

if (!SWIG_IsOK(SWIG_ ConvertPtr(obj0, (void **) &argl, SWIGTYPE_p Foo, 0))) {
SWIG_exception_fail (SWIG_TypeError, "in method 'Grabval', expecting type Foo");
}

In this code, SWIGTYPE_p_Foo is the type descriptor that describes Foo *. The type descriptor is actually a pointer to a structure that contains information about the type name to use in the
target language, a list of equivalent typenames (via typedef or inheritance), and pointer value handling information (if applicable). The SWIG_ConvertPtr() function is simply a utility function
that takes a pointer object in the target language and a type-descriptor object and uses this information to generate a C++ pointer. The SWIG_IsOK macro checks the return value for errors
and SWIG_exception_fail can be called to raise an exception in the target language. However, the exact name and calling conventions of the conversion function depends on the target
language (see language specific chapters for details).

The actual type code is in swigrun.swg, and gets inserted near the top of the generated swig wrapper file. The phrase "a type X that can cast into a type Y" means that given a type X, it can be
converted into a type Y. In other words, X is a derived class of Y or X is a typedef of Y. The structure to store type information looks like this:

/* Structure to store information on one type */
typedef struct swig_type_info {

const char *name; /* mangled name of this type */

const char *str; /* human readable name for this type */
swig_dycast_func dcast; /* dynamic cast function down a hierarchy */

struct swig_cast_info *cast; /* Linked list of types that can cast into this type */
void *clientdata; /* Language specific type data */

-~

swig_type_info;

/* Structure to store a type and conversion function used for casting */
typedef struct swig_cast_info {

swig_type_info *type; /* pointer to type that is equivalent to this type */
swig_converter_func converter; /* function to cast the void pointers */

struct swig_cast_info *next; /* pointer to next cast in linked list */

struct swig_cast_info *prev; /* pointer to the previous cast */

-~

swig_cast_info;

Each swig_type_info stores a linked list of types that it is equivalent to. Each entry in this doubly linked list stores a pointer back to another swig_type_info structure, along with a pointer to
a conversion function. This conversion function is used to solve the above problem of the FooBar class, correctly returning a pointer to the type we want.

The basic problem we need to solve is verifying and building arguments passed to functions. So going back to the SWIG_ConvertPtr () function example from above, we are expecting a
Foo * and need to check ifob3j0 is in fact aFoo * . From before, SWIGTYPE_p_Foo is just a pointer to theswig_type_info structure describing Foo *. So we loop through the linked list
of swig_cast_info structures attached to SWIGTYPE_p_Foo. If we see that the type ofobjo0 is in the linked list, we pass the object through the associated conversion function and then
return a positive. If we reach the end of the linked list without a match, then obj0 can not be converted to a Foo * and an error is generated.

Another issue needing to be addressed is sharing type information between multiple modules. More explicitly, we need to have ONE swig_type_info for each type. If two modules both use
the type, the second module loaded must lookup and use the swig_type_info structure from the module already loaded. Because no dynamic memory is used and the circular dependencies of
the casting information, loading the type information is somewhat tricky, and not explained here. A complete description is in the Lib/swiginit.swg file (and near the top of any generated
file).

Each module has one swig_module_info structure which looks like this:

/* Structure used to store module information

* Each module generates one structure like this, and the runtime collects

* all of these structures and stores them in a circularly linked list.*/
typedef struct swig_module_info {
swig_type_info **types; /* Array of pointers to swig_type info structs in this module */
int size; /* Number of types in this module */
struct swig module_info *next; /* Pointer to next element in circularly linked list */
swig_type info **type initial; /* Array of initially generated type structures */
swig_cast_info **cast_initial; /* Array of initially generated casting structures */
void *clientdata; /* Language specific module data */
swig_module info;

-~

Each module stores an array of pointers to swig_type_info structures and the number of types in this module. So when a second module is loaded, it finds the swig_module_info
structure for the first module and searches the array of types. If any of its own types are in the first module and have already been loaded, it uses those swig_type_info structures rather
than creating new ones. These swig_module_info structures are chained together in a circularly linked list.

13.12.2 Usage

This section covers how to use these functions from typemaps. To learn how to call these functions from external files (not the generated _wrap.c file), see the External access to the run-time
system section.

When pointers are converted in a typemap, the typemap code often looks similar to this:

%typemap(in) Foo * {
if (!SWIG_IsOK(SWIG_ ConvertPtr($input, (void **) &$1, $1_descriptor, 0))) {
SWIG_exception_fail(SWIG_TypeError, "in method '$symname', expecting type Foo");
}

The most critical part is the typemap is the use of the $1_descriptor special variable. When placed in a typemap, this is expanded into the SWIGTYPE_* type descriptor object above. As a
general rule, you should always use $1_descriptor instead of trying to hard-code the type descriptor name directly.

There is another reason why you should always use the $1_descriptor variable. When this special variable is expanded, SWIG marks the corresponding type as "in use.” When type-tables
and type information is emitted in the wrapper file, descriptor information is only generated for those datatypes that were actually used in the interface. This greatly reduces the size of the type
tables and improves efficiency.

Occasionally, you might need to write a typemap that needs to convert pointers of other types. To handle this, the special variable macro $descriptor (type) covered earlier can be used to
generate the SWIG type descriptor name for any C datatype. For example:

%typemap(in) Foo * {
if (!SWIG_IsOK(SWIG_ ConvertPtr($input, (void **) &$1, $1_descriptor, 0))) {
Bar *temp;
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if (!SWIG_IsSOK(SWIG_ConvertPtr($input, (void **) &temp, $descriptor(Bar *), 0))) {
SWIG_exception_fail (SWIG_TypeError, "in method '$symname', expecting type Foo or Bar");

}

$1 = (Foo *)temp;

The primary use of $descriptor (type) is when writing typemaps for container objects and other complex data structures. There are some restrictions on the argument---namely it must be
a fully defined C datatype. It can not be any of the special typemap variables.

In certain cases, SWIG may not generate type-descriptors like you expect. For example, if you are converting pointers in some non-standard way or working with an unusual combination of
interface files and modules, you may find that SWIG omits information for a specific type descriptor. To fix this, you may need to use the $types directive. For example:

%types(int *, short *, long *, float *, double *);

When %types is used, SWIG generates type-descriptor information even if those datatypes never appear elsewhere in the interface file.
Further details about the run-time type checking can be found in the documentation for individual language modules. Reading the source code may also help. The file Lib/swigrun.swgin

the SWIG library contains all of the source of the generated code for type-checking. This code is also included in every generated wrapped file so you probably just look at the output of SWIG
to get a better sense for how types are managed.

13.13 Typemaps and overloading

This section does not apply to the statically typed languages like Java and C#, where overloading of the types is handled much like C++ by generating overloaded methods in the target
language. In many of the other target languages, SWIG still fully supports C++ overloaded methods and functions. For example, if you have a collection of functions like this:

int foo(int x);
int foo(double x);
int foo(char *s, int y);

You can access the functions in a normal way from the scripting interpreter:

# Python

foo(3) # foo(int)
foo(3.5) # foo(double)
foo("hello", 5) # foo(char *, int)
# Tcl

foo 3 # foo(int)

foo 3.5 # foo(double)

foo hello 5 # foo(char *, int)

To implement overloading, SWIG generates a separate wrapper function for each overloaded method. For example, the above functions would produce something roughly like this:

// wrapper pseudocode
_wrap_foo_0(argc, args[]) { // foo(int)
int argl;
int result;
argl = FromInteger(args[0]);
result = foo(argl);
return ToInteger(result);

}

_wrap_foo_l(argc, args[]) { // foo(double)
double argl;
int result;
argl = FromDouble(args[0]);
result = foo(argl);
return TolInteger(result);

}

_wrap_foo_2(argc, args[]) { // foo(char *, int)

char *argl;

int arg2;

int result;

argl = FromString(args[0]);

arg2 = FromInteger(args[l]);

result = foo(argl, arg2);

return ToInteger(result);

Next, a dynamic dispatch function is generated:

_wrap_foo(argc, args[]) {
if (argec == 1) {
if (IsInteger(args[0])) {
return _wrap foo_ 0(argc, args);
}
if (IsDouble(args[0])) {
return _wrap foo_l(argc, args);

}
}
if (argc == 2) {
if (IsString(args[0]) && IsInteger(args[1])) {
return _wrap_foo_2(argc, args);
}
}

error("No matching function!\n");

}
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The purpose of the dynamic dispatch function is to select the appropriate C++ function based on argument types---a task that must be performed at runtime in most of SWIG's target

languages.

The generation of the dynamic dispatch function is a relatively tricky affair. Not only must input typemaps be taken into account (these typemaps can radically change the types of arguments
accepted), but overloaded methods must also be sorted and checked in a very specific order to resolve potential ambiguity. A high-level overview of this ranking process is found in the "SWIG

and C++ " chapter. What isn't mentioned in that chapter is the mechanism by which it is implemented---as a collection of typemaps.

To support dynamic dispatch, SWIG first defines a general purpose type hierarchy as follows:

Symbolic Name Precedence Value
SWIG_TYPECHECK_POINTER 0
SWIG_TYPECHECK ITERATOR 5
SWIG_TYPECHECK VOIDPTR 10
SWIG TYPECHECK BOOL 15
SWIG_TYPECHECK_| _UINTS 20
SWIG TYPECHECK INT8 25
SWIG TYPECHECK UINT16 30
SWIG TYPECHECK INT16 95
SWIG_TYPECHECK_UINT32 40
SWIG TYPECHECK_ INT32 45
SWIG TYPECHECK SIZE 47
SWIG_TYPECHECK PTRDIFF 48
SWIG_TYPECHECK_UINT64 50
SWIG TYPECHECK INT64 55
SWIG_TYPECHECK | _UINT128 60
SWIG_TYPECHECK_INT128 65
SWIG_TYPECHECK_INTEGER 70
SWIG_TYPECHECK FLOAT 80
SWIG_TYPECHECK DOUBLE 90
SWIG TYPECHECK CPLXFLT 95
SWIG_TYPECHECK_CPLXDBL 100
SWIG TYPECHECK COMPLEX 105
SWIG TYPECHECK UNICHAR 110
SWIG TYPECHECK STDUNISTRING 115
SWIG ' TYPECHECK UNISTRING 120
SWIG TYPECHECK_CHAR 130
SWIG TYPECHECK STDSTRING 135
SWIG_TYPECHECK STRING 140
SWIG_TYPECHECK PAIR 150
SWIG TYPECHECK STDARRAY 155
SWIG_TYPECHECK VECTOR 160
SWIG_TYPECHECK DEQUE 170
SWIG TYPECHECK LIST 180
SWIG_TYPECHECK SET 190
SWIG_TYPECHECK MULTISET 200
SWIG_TYPECHECK_MAP 210
SWIG_TYPECHECK_MULTIMAP 220
SWIG_TYPECHECK STACK 230
SWIG TYPECHECK QUEUE 240
SWIG TYPECHECK BOOL ARRAY 1015
SWIG ' TYPECHECK INT8 ARRAY 1025
SWIG TYPECHECK_ INT16 _ARRAY 1035
SWIG TYPECHECK INT32 _ARRAY 1045
SWIG_TYPECHECK_INT64 ARRAY 1055
SWIG_TYPECHECK_INT128 ARRAY 1065
SWIG_TYPECHECK_FLOAT_ARRAY 1080
SWIG_TYPECHECK DOUBLE_ARRAY 1090
SWIG_TYPECHECK CHAR_ARRAY 1130
SWIG TYPECHECK STRING ARRAY 1140
SWIG_TYPECHECK OBJECT_ ARRAY 1150
SWIG_TYPECHECK BOOL_PTR 2015
SWIG TYPECHECK UINTB PTR 2020
SWIG_TYPECHECK INT8 PTR 2025
SWIG TYPECHECK_ UINT16 _PTR 2030
SWIG TYPECHECK INTIG PTR 2035
SWIG_TYPECHECK_UINT32_PTR 2040
SWIG_TYPECHECK_INT32 PTR 2045
SWIG TYPECHECK_ UINT64 PTR 2050
SWIG TYPECHECK INT64 PTR 2055
SWIG_TYPECHECK ! FLOAT PTR 2080
SWIG_TYPECHECK DOUBLE_PTR 2090
SWIG TYPECHECK CHAR PTR 2130
SWIG_TYPECHECK SWIGOBJECT 5000

(These precedence levels are defined in swig.swg, a library file that's included by all target language modules.)

In this table, the precedence-level determines the order in which types are going to be checked. Low values are always checked before higher values. For example, integers are checked

before floats, single values are checked before arrays, and so forth.

Using the above table as a guide, each target language defines a collection of "typecheck" typemaps. The following excerpt from the Python module illustrates this:

/* Python type checking rules */
/* Note: %typecheck(X) is a macro for %$typemap(typecheck, precedence=X) */

$typecheck (SWIG_TYPECHECK INTEGER)
int, short, long,
unsigned int, unsigned short, unsigned long,
signed char, unsigned char,
long long, unsigned long long,
const int &, const short &, const long &,
const unsigned int &, const unsigned short &, const unsigned long &,
const long long &, const unsigned long long &,
enum SWIGTYPE,
bool, const bool &

$1 = (PyInt_Check($input) || PyLong_Check($input)) 2 1 : 0;
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$typecheck (SWIG_TYPECHECK DOUBLE)
float, double,
const float &, const double &

{
$1 = (PyFloat Check($input) || PyInt_Check($input) || PyLong_Check($input)) 2 1 : 0;

}

$typecheck (SWIG_TYPECHECK CHAR) char {
$1 = (PyString_Check($input) && (PyString_Size($input) == 1)) 2 1 : 0;
}

%typecheck (SWIG_TYPECHECK_STRING) char * {
$1 = PyString_ Check($input) ? 1 : 0;
}

$typemap (typecheck, precedence=SWIG_TYPECHECK POINTER, noblock=1) SWIGTYPE * {
void *vptr = 0;
int res = SWIG_ConvertPtr($input, &vptr, $1_descriptor, 0);
$1 = SWIG_IsOK(res) ? 1 : O0;

}

$typecheck (SWIG_TYPECHECK POINTER) PyObject * {
$1 = ($input != 0);
}

It might take a bit of contemplation, but this code has merely organized all of the basic C++ types, provided some simple type-checking code, and assigned each type a precedence value.

Finally, to generate the dynamic dispatch function, SWIG uses the following algorithm:

¢ Overloaded methods are first sorted by the number of required arguments.
¢ Methods with the same number of arguments are then sorted by precedence values of argument types.
¢ Typecheck typemaps are then emitted to produce a dispatch function that checks arguments in the correct order.

If you haven't written any typemaps of your own, it is unnecessary to worry about the typechecking rules. However, if you have written new input typemaps, you might have to supply a
typechecking rule as well. An easy way to do this is to simply copy one of the existing typechecking rules. Here is an example,

// Typemap for a C++ string
%typemap(in) std::string {
if (PyString_Check($input)) {
$1 = std::string(PyString_AsString($input));
} else {
SWIG_exception(SWIG_TypeError, "string expected");
}
}
// Copy the typecheck code for "char *".
%typemap (typecheck) std::string = char *;

The bottom line: If you are writing new typemaps and you are using overloaded methods, you will probably have to write new typecheck code or copy and modify existing typecheck code.

If you write a typecheck typemap and omit the precedence level, for example commenting it out as shown below:

$typemap (typecheck /*, precedence=SWIG_TYPECHECK_ INTEGER*/) int {
$1 = PyInt_Check($input) ? 1 : 0;
}

then the type is given a precedence higher than any other known precedence level and a warning is issued:

example.i:18: Warning 467: Overloaded method foo(int) not supported (incomplete type
checking rule - no precedence level in typecheck typemap for 'int').

Notes:

Typecheck typemaps are not used for non-overloaded methods. Because of this, it is still always necessary to check types in any “in" typemaps.

¢ The dynamic dispatch process is only meant to be a heuristic. There are many corner cases where SWIG simply can't disambiguate types to the same degree as C++. The only way to

resolve this ambiguity is to use the %rename directive to rename one of the overloaded methods (effectively eliminating overloading).

Typechecking may be partial. For example, if working with arrays, the typecheck code might simply check the type of the first array element and use that to dispatch to the correct
function. Subsequent "in" typemaps would then perform more extensive type-checking.

Make sure you read the section onoverloading in the SWIG and C++ chapter.

13.13.1 SWIG_TYPECHECK_POINTER precedence level and the typecheck typemap

When it comes to overloading of a particular type passed by value, pointer or reference (const and non-const), a C++ compiler can disambiguate which overloaded function to call. However,

SWIG effectively treats these as pointers in the target language and thus as equivalent types. For example, consider:

class X { ... };

void m(X const &c); // equivalent: void m(X *c);
void m(X &r); // equivalent: void m(X *r);
void m(X *p); // equivalent: void m(X *p);

These cannot be disambiguated in the target languages and so SWIG will choose the first method and ignore the subsequent two methods. The scripting languages do this by using the
overload dispatch mechanism described earlier and warnings indicate this:

example.i
example.
example.
example.i

Warning 509: Overloaded method m(X &) effectively ignored,
Warning 509: as it is shadowed by m(X const &).
Warning 509: Overloaded method m(X *) effectively ignored,
Warning 509: as it is shadowed by m(X const &).

The statically typed languages like Java and C# automatically ignore all but the first equivalent overloaded methods with warnings:

example.i:6: Warning 516: Overloaded method m(X &) ignored,
example.i:5: Warning 516: using m(X const &) instead.
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example.i:7: Warning 516: Overloaded method m(X *) ignored,
example.i:5: Warning 516: using m(X const &) instead.

You can select the overloaded method you would like to wrap by ignoring the other two with $ignore or rename two of them with $rename and this will of course remove the warnings too.
The problem of ambiguity is also discussed in the C++ chapter on overloading.

So how does this work with respect to typemaps? The typemaps SWIG provides to handle overloading for these three methods are from the SWIGTYPE family. As discussed earlier, in Default
typemap matching rules, the SWIGTYPE & typemaps are used for references and SWIGTYPE * typemaps are used for pointers. SWIG uses the special SWIG_TYPECHECK_POINTER (0)
precedence level to handle these types in the “typecheck" typemap:

%typemap (typecheck, precedence=SWIG_TYPECHECK POINTER) SWIGTYPE & "..."
$typemap (typecheck, precedence=SWIG_TYPECHECK POINTER) SWIGTYPE * "..

When the SWIGTYPE "typecheck" typemaps use the SWIG_TYPECHECK_POINTER precedence level, SWIG converts the type to a pointer equivalent type and then uses the equivalent type
to detect if it can be disambiguated in an overloaded method in the target language. In our example above, the equivalent types for X const & ,X & andX * are allX *. Asthey are the
same, they cannot be disambiguated and so just the first overloaded method is chosen.

The automatic conversion to equivalent types and subsequent type comparison is triggered via the use of the special SWIG_TYPECHECK _POINTER precedence level and works for types
passed by value, pointer and reference. Alas, there are more ways to overload a method that also need handling. C++ smart pointers are such a type which can be disambiguated by a C++
compiler but not automatically by SWIG. SWIG does not automatically know that a smart pointer has an equivalent type, but it can be told manually. Just specify the ‘equivalent' attribute in the
“typecheck" typemap with a pointer to the underlying type.

$typemap (typecheck, precedence=SWIG_TYPECHECK POINTER, equivalent="X *") MySmartPtr<x> " ... "

void m(X &r); // equivalent: void m(X *r);
void m(MySmartPtr<X> s); // equivalent: void m(X *s);

Now SWIG will detect the two types are equivalent and generate valid code by wrapping just the first overloaded method. You can of course choose which method to wrap by ignoring one of
them with $ignore . Otherwise both can be wrapped by removing the overloading name ambiguity by renaming one of them with $rename.

The 'equivalent’ attribute is used in the implementation for the shared_ptr smart pointer library.
13.14 More about %apply and %clear

In order to implement certain kinds of program behavior, it is sometimes necessary to write a family of typemap methods. For example, to support output arguments, one often writes a family of
typemaps like this:

%typemap(in, numinputs=0) int *OUTPUT (int temp) {
$1 = &temp;

}

$typemap(argout) int *OUTPUT {
// return value somehow

}

To make it easier to apply the typemap to different argument types and names, the $apply directive performs a copy of all typemaps from a source type to one or more set of target types. For
example, if you specify this,

%apply int *OUTPUT { int *retvalue, int32 *output };

then all of the int *OUTPUT (source) typemap methods are copied to int *retvalue and int32 *output (the targets).

However, there is a subtle aspect of $apply that needs clarification. Namely, if a target contains a typemap method that the source does not, the target typemap method remains in place and
unchanged. This behavior allows you to do two things:

¢ You can specialize parts of a complex typemap rule by first defining a few typemaps and then using apply to incorporate the remaining pieces.
« Different typemaps can be applied to the same datatype using repeated $apply directives.

For example:

%typemap(in) int *INPUT (int temp) {
temp = ... get value from $input ...;
$1 = &temp;

}

%typemap(check) int *POSITIVE {
if (*$1 <= 0) {
SWIG_exception(SWIG_ValueError, "Expected a positive number!\n");
return NULL;

}
}
%typemap(arginit) int *invalue %{
$1 = NULL;
%}
%apply int *INPUT { int *invalue };

%apply int *POSITIVE { int *invalue };

In this example, neither of the two $apply directives will overwrite / delete the “arginit" typemap as neither has an "arginit" typemap. The result is a family of three relevant typemaps for int
*invalue. Since $apply does not overwrite / delete any existing rules, the only way to reset behavior is to delete them, such as with the ¢clear directive. For example:

%clear int *invalue;

will delete the typemaps for all the typemap methods; namely “in", "check" and "arginit". Alternatively delete each one individually:

%typemap(in) int *invalue;
%typemap(check) int *invalue;
%typemap(arginit) int *invalue;

13.14 More about %apply and %clear



13.15

SWIG-4.0 Documentation

Passing data between typemaps

It is also important to note that the primary use of local variables is to create stack-allocated objects for temporary use inside a wrapper function (this is faster and less-prone to error than
allocating data on the heap). In general, the variables are not intended to pass information between different types of typemaps. However, this can be done if you realize that local names have
the argument number appended to them. For example, you could do this:

%typemap(in) int *(int temp) {
temp = (int) PyInt_AsLong($input);
$1 = &temp;

}

%typemap(argout) int * {
PyObject *o = PyInt_ FromLong(temp$argnum);

In this case, the $argnum variable is expanded into the argument number. Therefore, the code will reference the appropriate local such as temp1 and temp2. It should be noted that there are
plenty of opportunities to break the universe here and that accessing locals in this manner should probably be avoided. At the very least, you should make sure that the typemaps sharing

infor
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mation have exactly the same types and names.

C++ "this" pointer

All the rules discussed for typemaps apply to C++ as well as C. However in addition C++ passes an extra parameter into every non-static class method -- the this pointer. Occasionally it can
be useful to apply a typemap to this pointer (for example to check and make sure this is non-null before deferencing). Actually, C also has an the equivalent of the this pointer which is used
when accessing variables in a C struct.

In order to customise the this pointer handling, target a variable named self in your typemaps. self is the name SWIG uses to refer to the extra parameter in wrapped functions.

For example, if wrapping for Java generation:

In th

%typemap(check) SWIGTYPE *self %{
if (1$1) {
SWIG_JavaThrowException(jenv, SWIG_JavaNullPointerException,
"invalid native object; delete() likely already called");
return $null;
}
%}

e above case, the $1 variable is expanded into the argument name that SWIG is using as the this pointer. SWIG will then insert the check code before the actual C++ class method i

called, and will raise an exception rather than crash the Java virtual machine. The generated code will look something like:

S

if (largl) {
SWIG_JavaThrowException(jenv, SWIG_JavaNullPointerException,
"invalid native object; delete() likely already called");
return ;
}

(argl)->wrappedFunction(...);

Note that if you have a parameter named self£ then it will also match the typemap. One work around is to create an interface file that wraps the method, but gives the argument a name other

than

13.17

self.

Where to go for more information?

The best place to find out more information about writing typemaps is to look in the SWIG library. Most language modules define all of their default behavior using typemaps. These are found
in files such as python. swg, perl5.swg, tcl8.swg and so forth. The typemaps. i file in the library also contains numerous examples. You should look at these files to get a feel for how to
define typemaps of your own. Some of the language modules support additional typemaps and further information is available in the individual chapters for each target language. There you

may

also find more hands-on practical examples.

14 Customization Features

* Exception handling with %exception

o Handling exceptions in C code

o Exception handling with longjmp(

o Handling C++ exceptions

o Exception handlers for variables

o Defining different exception handlers
o Special variables for %exception

o Using The SWIG exception library

o Object ownership and %newobject
e Features and the %feature directive

o Feature attributes

o Feature flags

o Clearing features

o Features and default arguments
o Feature example

Inm

any cases, it is desirable to change the default wrapping of particular declarations in an interface. For example, you might want to provide hooks for catching C++ exceptions, add

assertions, or provide hints to the underlying code generator. This chapter describes some of these customization techniques. First, a discussion of exception handling is presented. Then, a
more general-purpose customization mechanism known as "features” is described.

14.1 Exception handling with %exception

The

%exception directive allows you to define a general purpose exception handler. For example, you can specify the following:

%exception {

try {
Saction
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}
catch (RangeError) {
... handle error ...

}

How the exception is handled depends on the target language, for example, Python:

%exception {

try {
$action

}

catch (RangeError) {
PyErr_SetString(PyExc_IndexError, "index out-of-bounds");
SWIG_fail;

}

When defined, the code enclosed in braces is inserted directly into the low-level wrapper functions. The special variable $action is one of a few %exception special variables supported and
gets replaced with the actual operation to be performed (a function call, method invocation, attribute access, etc.). An exception handler remains in effect until it is explicitly deleted. This is
done by using either $exception or $noexception with no code. For example:

%exception; // Deletes any previously defined handler

Compatibility note: Previous versions of SWIG used a special directive $except for exception handling. That directive is deprecated--3exception provides the same functionality, but is
substantially more flexible.

14.1.1 Handling exceptions in C code

C has no formal exception handling mechanism so there are several approaches that might be used. A somewhat common technique is to simply set a special error code. For example:

/* File : except.c */

static char error message[256];
static int error_status = 0;

void throw_exception(char *msg) {
strncpy(error_message, msg, 256);
error_status = 1;

}

void clear_exception() {
error_status = 0;
}
char *check_exception() {
if (error_status)
return error_message;
else
return NULL;

To use these functions, functions simply call throw_exception () to indicate an error occurred. For example :

double inv(double x) {

if (x 1= 0)
return 1.0/x;
else {

throw_exception("Division by zero");
return 0;

To catch the exception, you can write a simple exception handler such as the following (shown for Perl5) :

%exception {
char *err;
clear_exception();
s$action
if ((err = check_exception())) {
croak(err);

}

In this case, when an error occurs, it is translated into a Perl error. Each target language has its own approach to creating a runtime error/exception in and for Perl it is the croak method
shown above.

14.1.2 Exception handling with longjmp()

Exception handling can also be added to C code using the <setjmp.h> library. Here is a minimalistic implementation that relies on the C preprocessor :

/* File : except.c
Just the declaration of a few global variables we're going to use */

#include <setjmp.h>
jmp_buf exception_buffer;
int exception_ status;

/* File : except.h */
#include <setjmp.h>
extern jmp_buf exception_buffer;
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extern int exception_status;

#define try if ((exception_status = setjmp(exception buffer)) == 0)
#define catch(val) else if (exception_status == val)

#define throw(val) longjmp(exception_buffer, val)

#define finally else

/* Exception codes */

#define RangeError 1
#define DivisionByZero 2
#define OutOfMemory 3

Now, within a C program, you can do the following :

double inv(double x) {
if (x)
return 1.0/x;
else
throw(DivisionByZero) ;

Finally, to create a SWIG exception handler, write the following :

3{
#include "except.h"
%}

%exception {

try {
$action
catch(RangeError) {
croak("Range Error");
catch(DivisionByZero) {
croak("Division by zero");
catch(OutOfMemory) {
croak("Out of memory");
finally {
croak("Unknown exception");

o

-~

Note: This implementation is only intended to illustrate the general idea. To make it work better, you'll need to modify it to handle nested try declarations.

14.1.3 Handling C++ exceptions

Handling C++ exceptions is also straightforward. For example:

%exception {

try {
Saction
catch(RangeError) {
croak("Range Error");
catch(DivisionByZero) {
croak("Division by zero");
catch(OutOfMemory) {
croak("Out of memory");
catch(...) {
croak("Unknown exception");

-~

-~

-~

-~

The exception types need to be declared as classes elsewhere, possibly in a header file :

class RangeError {};
class DivisionByZero {};
class OutOfMemory {};

14.1.4 Exception handlers for variables

By default all variables will ignore $exception, so it is effectively turned off for all variables wrappers. This applies to global variables, member variables and static member variables. The
approach is certainly a logical one when wrapping variables in C. However, in C++, it is quite possible for an exception to be thrown while the variable is being assigned. To ensure
$exception is used when wrapping variables, it needs to be ‘turned on' using the 2allowexception feature. Note that 2allowexception is just a macro for
3feature("allowexcept"), thatis, it is a feature called "allowexcept". Any variable which has this feature attached to it, will then use the $exception feature, but of course, only if there
is a ¥exception attached to the variable in the first place. The $allowexception feature works like any other feature and so can be used globally or for selective variables.

%allowexception; // turn on globally
%allowexception Klass::MyVar; // turn on for a specific variable

gnoallowexception Klass::MyVar; // turn off for a specific variable
%noallowexception; // turn off globally

14.1.5 Defining different exception handlers

By default, the $exception directive creates an exception handler that is used for all wrapper functions that follow it. Unless there is a well-defined (and simple) error handling mechanism in
place, defining one universal exception handler may be unwieldy and result in excessive code bloat since the handler is inlined into each wrapper function.

To fix this, you can be more selective about how you use the $exception directive. One approach is to only place it around critical pieces of code. For example:
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%exception {
... your exception handler ...
}

/* Define critical operations that can throw exceptions here */
%exception;

/* Define non-critical operations that don't throw exceptions */

More precise control over exception handling can be obtained by attaching an exception handler to specific declaration name. For example:

%exception allocate {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

In this case, the exception handler is only attached to declarations named "allocate". This would include both global and member functions. The names supplied to $exception follow the
same rules as for $rename described in the section onRenaming and ambiguity resolution. For example, if you wanted to define an exception handler for a specific class, you might write this:

%exception Object::allocate {
try {
Saction
}
catch (MemoryError) {
croak("Out of memory");

}

When a class prefix is supplied, the exception handler is applied to the corresponding declaration in the specified class as well as for identically named functions appearing in derived classes.

%exception can even be used to pinpoint a precise declaration when overloading is used. For example:

%exception Object::allocate(int) {
try {
saction
}
catch (MemoryError) {
croak("Out of memory");

}

Attaching exceptions to specific declarations is a good way to reduce code bloat. It can also be a useful way to attach exceptions to specific parts of a header file. For example:

%module example

3{

#include "someheader.h"
%}

// Define a few exception handlers for specific declarations
%exception Object::allocate(int) {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

%exception Object::getitem {
try {
$action
}
catch (RangeError) {
croak("Index out of range");
}
}
// Read a raw header file
%include "someheader.h"

Compatibility note: The $exception directive replaces the functionality provided by the deprecated "except” typemap. The typemap would allow exceptions to be thrown in the target

language based on the return type of a function and was intended to be a mechanism for pinpointing specific declarations. However, it never really worked that well and the new %exception
directive is much better.

14.1.6 Special variables for %exception

The %exception directive supports a few special variables which are placeholders for code substitution. The following table shows the available special variables and details what the special
variables are replaced with.

$action The actual operation to be performed (a function call, method invocation, variable access, etc.)
$name The C/C++ symbol name for the function.
$symname The symbol name used internally by SWIG
$ The extra mangling used in the symbol name for overloaded method. Expands to nothing if the wrapped method is not
overname
overloaded.
$wrapname The language specific wrapper name (usually a C function name exported from the shared object/dll)
$decl The fully qualified C/C++ declaration of the method being wrapped without the return type
$fulldecl

The fully qualified C/C++ declaration of the method being wrapped including the return type

$parentclassname The parent class name (if any) for a method.
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$parentclasssymname The target language parent class name (if any) for a method.

The special variables are often used in situations where method calls are logged. Exactly which form of the method call needs logging is up to individual requirements, but the example code
below shows all the possible expansions, plus how an exception message could be tailored to show the C++ method declaration:

%exception Special::something {
log("symname: $symname");
log("overname: $overname");
log("wrapname: $wrapname");
log("decl: $decl");
log("fulldecl: $fulldecl");
try {

$action
}
catch (MemoryError) {

croak("Out of memory in $decl");
}

}

void log(const char *message);

struct Special {
void something(const char *c);
void something(int i);

}i

Below shows the expansions for the 1st of the overloaded something wrapper methods for Perl:

log("symname: Special something");
log("overname: __ SWIG_0");
log("wrapname: _wrap_Special_ something SWIG 0");
log("decl: Special::something(char const *)");
log("fulldecl: void Special::something(char const *)");
try {
(argl)->something((char const *)arg2);
}
catch (MemoryError) {
croak("Out of memory in Special::something(char const *)");

}

14.1.7 Using The SWIG exception library

The exception. i library file provides support for creating language independent exceptions in your interfaces. To use it, simply put an "$include exception.i"in your interface file. This
provides a function SWIG_exception() that can be used to raise common scripting language exceptions in a portable manner. For example :

// Language independent exception handler
%include exception.i

%exception {
try {
$action
catch(RangeError) {
SWIG_exception(SWIG_ValueError, "Range Error");

-~

} catch(DivisionByZero) {
SWIG_exception(SWIG_DivisionByZero, "Division by zero");
} catch(OutOfMemory) {
SWIG_exception(SWIG_MemoryError, "Out of memory");
} catch(...) {
SWIG_exception(SWIG_RuntimeError, "Unknown exception");
}

As arguments, SWIG_exception() takes an error type code (an integer) and an error message string. The currently supported error types are :

SWIG_UnknownError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
SWIG_AttributeError
SWIG_MemoryError
SWIG_NullReferenceError

The SWIG_exception() function can also be used in typemaps.
14.2 Object ownership and %newobject

A common problem in some applications is managing proper ownership of objects. For example, consider a function like this:

Foo *blah() {
Foo *f = new Foo();
return f;

If you wrap the function blah (), SWIG has no idea that the return value is a newly allocated object. As a result, the resulting extension module may produce a memory leak (SWIG is
conservative and will never delete objects unless it knows for certain that the returned object was newly created).

To fix this, you can provide an extra hint to the code generator using the $newobject directive. For example:
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%newobject blah;
Foo *blah();

$newobject works exactly like $rename and $exception. In other words, you can attach it to class members and parameterized declarations as before. For example:

%newobject ::blah(); // Only applies to global blah
gnewobject Object::blah(int, double); // Only blah(int, double) in Object
%newobject *::copy; // Copy method in all classes

When gnewobject is supplied, many language modules will arrange to take ownership of the return value. This allows the value to be automatically garbage-collected when it is no longer in
use. However, this depends entirely on the target language (a language module may also choose to ignore the $newobject directive).

Closely related to $newobject is a special typemap. The "newfree” typemap can be used to deallocate a newly allocated return value. It is only available on methods for which $newobject
has been applied and is commonly used to clean-up string results. For example:

%typemap(newfree) char * "free($1l);";
%newobject strdup;

char *strdup(const char *s);

In this case, the result of the function is a string in the target language. Since this string is a copy of the original result, the data returned by strdup () is no longer needed. The "newfree"
typemap in the example simply releases this memory.

As a complement to the $newobject, from SWIG 1.3.28, you can use the $delobject directive. For example, if you have two methods, one to create objects and one to destroy them, you
can use:

%$newobject create_foo;
$delobject destroy_foo;

Foo *create_foo();

void destroy_foo(Foo *foo);

or in a member method as:

%delobject Foo::destroy;

class Foo {
public:
void destroy() { delete this;}

private:
~Foo();
}i

%delobject instructs SWIG that the first argument passed to the method will be destroyed, and therefore, the target language should not attempt to deallocate it twice. This is similar to use
the DISOWN typemap in the first method argument, and in fact, it also depends on the target language on implementing the ‘disown’ mechanism properly.

The use of $newobject is also integrated with reference counting and is covered in the C++ reference counted objects section.

Compatibility note: Previous versions of SWIG had a special $new directive. However, unlike $newobject, it only applied to the next declaration. For example:

%new char *strdup(const char *s);

For now this is still supported but is deprecated.

How to shoot yourself in the foot: The $newobject directive is not a declaration modifier like the old $new directive. Don't write code like this:

%newobject
char *strdup(const char *s);

The results might not be what you expect.
14.3 Features and the %feature directive

Both $exception and $newobject are examples of a more general purpose customization mechanism known as “features." A feature is simply a user-definable property that is attached to
specific declarations. Features are attached using the $feature directive. For example:

%feature("except") Object::allocate {
try {
Saction
}
catch (MemoryError) {
croak("Out of memory");
}
}

%feature("new", "1") *::copy;

In fact, the $exception and $newobject directives are really nothing more than macros involving $feature:

#define %exception %feature("except")
#define %newobject %feature("new", "1")

The name matching rules outlined in the Renaming and ambiguity resolution section applies to all 2 feature directives. In fact the $rename directive is just a special form of $feature. The
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matching rules mean that features are very flexible and can be applied with pinpoint accuracy to specific declarations if needed. Additionally, if no declaration name is given, a global feature is
said to be defined. This feature is then attached to every declaration that follows. This is how global exception handlers are defined. For example:

/* Define a global exception handler */
%feature("except") {
try {
saction

... bunch of declarations ...

The $feature directive can be used with different syntax. The following are all equivalent:

%feature("except") Object::method { S$action };
%feature("except") Objec method %{ $action %};
%feature("except") Object::method " $action ";
%feature("except”, "$action") Object::method;

The syntax in the first variation will generate the { } delimiters used whereas the other variations will not.
14.3.1 Feature attributes

The $feature directive also accepts XML style attributes in the same way that typemaps do. Any number of attributes can be specified. The following is the generic syntax for features:

%feature("name", "value", attributel="AttributeValuel") symbol;
%feature("name", attributel="AttributeValuel") symbol {value};
%feature("name", attributel="AttributeValuel") symbol %{value$};
%feature("name", attributel="AttributeValuel") symbol "value";

More than one attribute can be specified using a comma separated list. The Java module is an example that uses attributes in $feature ("except"). The throws attribute specifies the
name of a Java class to add to a proxy method's throws clause. In the following example, MyExceptionClass is the name of the Java class for adding to the throws clause.

%feature("except", throws="MyExceptionClass") Object::method {
try {
Saction
} catch (...) {
... code to throw a MyExceptionClass Java exception ...
}
}i

Further details can be obtained fr